Lyapunov–Malkin theorem

Lyapunov–Malkin theorem The Lyapunov–Malkin theorem (named for Aleksandr Lyapunov and Ioel Malkin [ru]) is a mathematical theorem detailing nonlinear stability of systems.[1][2] Theorem In the system of differential equations, {stile di visualizzazione {punto {X}}=Ax+X(X,y),quad {punto {y}}=Y(X,y)} dove {displaystyle xin mathbb {R} ^{m}} e {displaystyle yin mathbb {R} ^{n}} are components of the system state, {displaystyle Ain mathbb {R} ^{mtimes m}} is a matrix that represents the linear dynamics of {stile di visualizzazione x} , e {stile di visualizzazione X:mathbb {R} ^{m}volte mathbb {R} ^{n}a matematicabb {R} ^{m}} e {stile di visualizzazione Y:mathbb {R} ^{m}volte mathbb {R} ^{n}a matematicabb {R} ^{n}} represent higher-order nonlinear terms. If all eigenvalues of the matrix {stile di visualizzazione A} have negative real parts, and X(X, y), Y(X, y) vanish when x = 0, then the solution x = 0, y = 0 of this system is stable with respect to (X, y) and asymptotically stable with respect to x. If a solution (X(t), y(t)) is close enough to the solution x = 0, y = 0, poi {displaystyle lim _{tto infty }X(t)=0,quad lim _{tto infty }y(t)=c.} Example Consider the vector field given by {stile di visualizzazione {punto {X}}=-x+x^{2}y,quad {punto {y}}=xy^{2}} In questo caso, A = -1 and X(0, y) = Y(0, y) = 0 for all y, so this system satisfy the hypothesis of Lyapunov-Malkin theorem.

The figure below shows a plot of this vector field along with some trajectories that pass near (0,0). As expected by the theorem, it can be seen that trajectories in the neighborhood of (0,0) converges to a point in the form (0,c).

References ^ Zenkov, D. V.; Bloch, UN. M.; Marsden, J. e. (2002). "Lyapunov–Malkin Theorem and Stabilization of the Unicycle Rider" (PDF). Systems and Control Letters. 45 (4): 293–302. doi:10.1016/S0167-6911(01)00187-6. ^ Bloch, Anthony; Krishnaprasad, Perinkulam Sambamurthy; Murray, R. M. (2015). Nonholonomic mechanics and control (2nd ed.). New York, New York. ISBN 9781493930173. OCLC 932167031. Categorie: Theorems in dynamical systemsStability theory

Se vuoi conoscere altri articoli simili a Lyapunov–Malkin theorem puoi visitare la categoria Stability theory.

lascia un commento

L'indirizzo email non verrà pubblicato.

Vai su

Utilizziamo cookie propri e di terze parti per migliorare l'esperienza dell'utente Maggiori informazioni