# Teorema de Lumer-Phillips

Lumer–Phillips theorem In mathematics, the Lumer–Phillips theorem, named after Günter Lumer and Ralph Phillips, is a result in the theory of strongly continuous semigroups that gives a necessary and sufficient condition for a linear operator in a Banach space to generate a contraction semigroup.

Conteúdo 1 Declaração do teorema 2 Variants of the theorem 2.1 Reflexive spaces 2.2 Dissipativity of the adjoint 2.3 Quasicontraction semigroups 3 Exemplos 4 Notas 5 References Statement of the theorem Let A be a linear operator defined on a linear subspace D(UMA) of the Banach space X. Then A generates a contraction semigroup if and only if[1] D(UMA) is dense in X, A is closed, A is dissipative, and A − λ0I is surjective for some λ0> 0, onde I denota o operador identidade.

An operator satisfying the last two conditions is called maximally dissipative.

Variants of the theorem Reflexive spaces Let A be a linear operator defined on a linear subspace D(UMA) of the reflexive Banach space X. Then A generates a contraction semigroup if and only if[2] A is dissipative, and A − λ0I is surjective for some λ0> 0, onde I denota o operador identidade.

Note that the conditions that D(UMA) is dense and that A is closed are dropped in comparison to the non-reflexive case. This is because in the reflexive case they follow from the other two conditions.

Dissipativity of the adjoint Let A be a linear operator defined on a dense linear subspace D(UMA) of the reflexive Banach space X. Then A generates a contraction semigroup if and only if[3] A is closed and both A and its adjoint operator A∗ are dissipative.

In case that X is not reflexive, then this condition for A to generate a contraction semigroup is still sufficient, but not necessary.[4] Quasicontraction semigroups Let A be a linear operator defined on a linear subspace D(UMA) of the Banach space X. Then A generates a quasi contraction semigroup if and only if D(UMA) is dense in X, A is closed, A is quasidissipative, ou seja. there exists a ω ≥ 0 such that A − ωI is dissipative, and A − λ0I is surjective for some λ0 > ω, onde I denota o operador identidade. Examples Consider H = L2([0, 1]; R) with its usual inner product, and let Au = u′ with domain D(UMA) equal to those functions u in the Sobolev space H1([0, 1]; R) with u(1) = 0. D(UMA) is dense. Além disso, for every u in D(UMA), {displaystyle langle u,Aurangle =int _{0}^{1}você(x)u'(x),matemática {d} x=-{fratura {1}{2}}você(0)^{2}leq 0,} so that A is dissipative. The ordinary differential equation u' − λu = f, você(1) = 0 has a unique solution u in H1([0, 1]; R) for any f in L2([0, 1]; R), nomeadamente {estilo de exibição você(x)={rm {e}}^{lambda x}int_{1}^{x}{rm {e}}^{-lambda t}f(t),dt} so that the surjectivity condition is satisfied. Por isso, by the reflexive version of the Lumer–Phillips theorem A generates a contraction semigroup.

There are many more examples where a direct application of the Lumer–Phillips theorem gives the desired result.

In conjunction with translation, scaling and perturbation theory the Lumer–Phillips theorem is the main tool for showing that certain operators generate strongly continuous semigroups. The following is an example in point.

A normal operator (an operator that commutes with its adjoint) on a Hilbert space generates a strongly continuous semigroup if and only if its spectrum is bounded from above.[5] Notes ^ Engel and Nagel Theorem II.3.15, Arendt et al. Teorema 3.4.5, Staffans Theorem 3.4.8 ^ Engel and Nagel Corollary II.3.20 ^ Engel and Nagel Theorem II.3.17, Staffans Theorem 3.4.8 ^ There do appear statements in the literature that claim equivalence also in the non-reflexive case (por exemplo. Luo, Guo, Morgul Corollary 2.28), but these are in error. ^ Engel and Nagel Exercise II.3.25 (ii) References Lumer, Günter & Phillips, R. S. (1961). "Dissipative operators in a Banach space". Pacific J. Matemática. 11: 679-698. doi:10.2140/pjm.1961.11.679. ISSN 0030-8730. Renardy, Michael & Rogers, Roberto C. (2004). Uma introdução às equações diferenciais parciais. Textos em Matemática Aplicada 13 (Second ed.). Nova york: Springer-Verlag. p. 356. ISBN 0-387-00444-0. Engel, Klaus-Jochen; Nagel, Rainer (2000), One-parameter semigroups for linear evolution equations, Springer Arendt, Wolfgang; Batty, Carlos; Hieber, Matias; Neubrander, Franco (2001), Vector-valued Laplace Transforms and Cauchy Problems, Birkhauser Staffans, Olof (2005), Well-posed linear systems, Cambridge University Press Luo, Zheng-Hua; Guo, Bao-Zhu; Morgul, Omer (1999), Stability and Stabilization of Infinite Dimensional Systems with Applications, Springer hide vte Functional analysis (tópicos – glossário) Espaços BanachBesovFréchetHilbertHölderNuclearOrliczSchwartzSobolevvetor topológico Propriedades barrilledcompletedual (algébrico/topológico)Teoremas localmente convexo, reflexivo e separável Representação de Hahn–BanachRiesz grafo fechadoprincípio da limitação uniformeKakutani ponto fixoKrein–Milmanmin–maxGelfand–NaimarkBanach–Alaoglu Operadores adjointboundedcompactHilbert–Schmidtnormalnucleartrace classtransposeunboundedunitary ÁlgebrasBanach álgebraC*-algebraspectrum of a C*-algebraoperator álgebra álgebra de grupo de um grupo localmente compacto álgebra de von Neumann Problemas abertos invariantes problema de subespaço Conjectura de Mahler Aplicações Espaço de Hardy teoria espectral de equações diferenciais ordinárias núcleo de calor teorema de índice cálculo de variações cálculo funcional operador integral polinômio de Jones teoria quântica topológica de campos geometria não comutativa hipótese de Riemann distribuição (ou funções generalizadas) Tópicos avançados propriedade de aproximação conjunto equilibrado Teoria de Choquet topologia fraca Distância de Banach–Mazur Teoria de Tomita–Takesaki Categorias: Semigroup theoryTheorems in functional analysis

Se você quiser conhecer outros artigos semelhantes a Teorema de Lumer-Phillips você pode visitar a categoria Semigroup theory.

Ir para cima

Usamos cookies próprios e de terceiros para melhorar a experiência do usuário Mais informação