Lukacs's proportion-sum independence theorem

Lukacs's proportion-sum independence theorem In statistics, Lukacs's proportion-sum independence theorem is a result that is used when studying proportions, in particular the Dirichlet distribution. It is named after Eugene Lukacs.[1] The theorem If Y1 and Y2 are non-degenerate, independent random variables, then the random variables {displaystyle W=Y_{1}+O_{2}{texte{ et }}P={frac {O_{1}}{O_{1}+O_{2}}}} are independently distributed if and only if both Y1 and Y2 have gamma distributions with the same scale parameter.

Corollary Suppose Y i, i = 1, ..., k be non-degenerate, independent, positive random variables. Then each of k − 1 random variables {style d'affichage P_{je}={frac {O_{je}}{somme _{je=1}^{k}O_{je}}}} is independent of {displaystyle W=sum _{je=1}^{k}O_{je}} if and only if all the Y i have gamma distributions with the same scale parameter.[2] References ^ Lukacs, Eugène (1955). "A characterization of the gamma distribution". Annales de statistiques mathématiques. 26: 319–324. est ce que je:10.1214/aoms/1177728549. ^ Mosimann, Jacques E. (1962). "On the compound multinomial distribution, the multivariate {style d'affichage bêta } distribution, and correlation among proportions". Biometrika. 49 (1 et 2): 65–82. est ce que je:10.1093/biomet/49.1-2.65. JSTOR 2333468. Ng, O. N; Tian, G-L; Tang, M-L (2011). Dirichlet and Related Distributions. John Wiley & Sons, Ltd. ISBN 978-0-470-68819-9. page 64. Lukacs's proportion-sum independence theorem and the corollary with a proof. Catégories: Probability theoremsCharacterization of probability distributions

Si vous voulez connaître d'autres articles similaires à Lukacs's proportion-sum independence theorem vous pouvez visiter la catégorie Characterization of probability distributions.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations