Théorème de Looman-Menchoff

Looman–Menchoff theorem In the mathematical field of complex analysis, the Looman–Menchoff theorem states that a continuous complex-valued function defined in an open set of the complex plane is holomorphic if and only if it satisfies the Cauchy–Riemann equations. It is thus a generalization of a theorem by Édouard Goursat, which instead of assuming the continuity of f, assumes its Fréchet differentiability when regarded as a function from a subset of R2 to R2.

A complete statement of the theorem is as follows: Let Ω be an open set in C and f : Ω → C be a continuous function. Suppose that the partial derivatives {displaystyle partial f/partial x} et {displaystyle partial f/partial y} exist everywhere but a countable set in Ω. Then f is holomorphic if and only if it satisfies the Cauchy–Riemann equation: {style d'affichage {frac {f partiel}{partiel {bar {z}}}}={frac {1}{2}}la gauche({frac {f partiel}{partiel x}}+je{frac {f partiel}{y partiel}}droit)=0.} Examples Looman pointed out that the function given by f(z) = exp(−z−4) for z ≠ 0, F(0) = 0 satisfies the Cauchy–Riemann equations everywhere but is not analytic (or even continuous) at z = 0. This shows that the function f must be assumed continuous in the theorem.

The function given by f(z) = z5/|z|4 for z ≠ 0, F(0) = 0 is continuous everywhere and satisfies the Cauchy–Riemann equations at z = 0, but is not analytic at z = 0 (or anywhere else). This shows that a naive generalization of the Looman–Menchoff theorem to a single point is false: Let f be continuous at a neighborhood of a point z, et telle que {displaystyle partial f/partial x} et {displaystyle partial f/partial y} exist at z. Then f is holomorphic at z if and only if it satisfies the Cauchy–Riemann equation at z. References Gray, J. RÉ.; Morris, S. UN. (1978), "When is a Function that Satisfies the Cauchy-Riemann Equations Analytic?", Le mensuel mathématique américain (published April 1978), 85 (4): 246–256, est ce que je:10.2307/2321164, JSTOR 2321164. Looman, H. (1923), "Über die Cauchy–Riemannschen Differentialgleichungen", Göttinger Nachrichten: 97–108. Menchoff, ré. (1936), Les conditions de monogénéité, Paris. Montel, P. (1913), "Sur les différentielles totales et les fonctions monogènes", C. R. Acad. SCI. Paris, 156: 1820–1822. Narasimhan, Raghavan (2001), Complex Analysis in One Variable, Birkhauser, ISBN 0-8176-4164-5.

Cet article lié à l'analyse mathématique est un bout. Vous pouvez aider Wikipédia en l'agrandissant.

Catégories: Theorems in complex analysisMathematical analysis stubs

Si vous voulez connaître d'autres articles similaires à Théorème de Looman-Menchoff vous pouvez visiter la catégorie Notes d'analyse mathématique.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations