# Théorème de Looman-Menchoff Looman–Menchoff theorem In the mathematical field of complex analysis, the Looman–Menchoff theorem states that a continuous complex-valued function defined in an open set of the complex plane is holomorphic if and only if it satisfies the Cauchy–Riemann equations. It is thus a generalization of a theorem by Édouard Goursat, which instead of assuming the continuity of f, assumes its Fréchet differentiability when regarded as a function from a subset of R2 to R2.

A complete statement of the theorem is as follows: Let Ω be an open set in C and f : Ω → C be a continuous function. Suppose that the partial derivatives {displaystyle partial f/partial x} et {displaystyle partial f/partial y} exist everywhere but a countable set in Ω. Then f is holomorphic if and only if it satisfies the Cauchy–Riemann equation: {style d'affichage {frac {f partiel}{partiel {bar {z}}}}={frac {1}{2}}la gauche({frac {f partiel}{partiel x}}+je{frac {f partiel}{y partiel}}droit)=0.} Examples Looman pointed out that the function given by f(z) = exp(−z−4) for z ≠ 0, F(0) = 0 satisfies the Cauchy–Riemann equations everywhere but is not analytic (or even continuous) at z = 0. This shows that the function f must be assumed continuous in the theorem.

The function given by f(z) = z5/|z|4 for z ≠ 0, F(0) = 0 is continuous everywhere and satisfies the Cauchy–Riemann equations at z = 0, but is not analytic at z = 0 (or anywhere else). This shows that a naive generalization of the Looman–Menchoff theorem to a single point is false: Let f be continuous at a neighborhood of a point z, et telle que {displaystyle partial f/partial x} et {displaystyle partial f/partial y} exist at z. Then f is holomorphic at z if and only if it satisfies the Cauchy–Riemann equation at z. References Gray, J. RÉ.; Morris, S. UN. (1978), "When is a Function that Satisfies the Cauchy-Riemann Equations Analytic?", Le mensuel mathématique américain (published April 1978), 85 (4): 246–256, est ce que je:10.2307/2321164, JSTOR 2321164. Looman, H. (1923), "Über die Cauchy–Riemannschen Differentialgleichungen", Göttinger Nachrichten: 97–108. Menchoff, ré. (1936), Les conditions de monogénéité, Paris. Montel, P. (1913), "Sur les différentielles totales et les fonctions monogènes", C. R. Acad. SCI. Paris, 156: 1820–1822. Narasimhan, Raghavan (2001), Complex Analysis in One Variable, Birkhauser, ISBN 0-8176-4164-5.

Cet article lié à l'analyse mathématique est un bout. Vous pouvez aider Wikipédia en l'agrandissant.

Catégories: Theorems in complex analysisMathematical analysis stubs

Si vous voulez connaître d'autres articles similaires à Théorème de Looman-Menchoff vous pouvez visiter la catégorie Notes d'analyse mathématique.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations