# Liouville's theorem (Hamiltonian)

Liouville's theorem (Hamiltonian) This article is about Liouville's theorem in Hamiltonian mechanics. Para outros usos, see Liouville's theorem. Part of a series on Classical mechanics {estilo de exibição {textbf {F}}={fratura {d}{dt}}(m{textbf {v}})} Second law of motion HistoryTimelineTextbooks show Branches show Fundamentals hide Formulations Newton's laws of motion Analytical mechanics Lagrangian mechanics Hamiltonian mechanics Routhian mechanics Hamilton–Jacobi equation Appell's equation of motion Koopman–von Neumann mechanics show Core topics show Rotation show Scientists Physics portal Category vte In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics. It asserts that the phase-space distribution function is constant along the trajectories of the system—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time. This time-independent density is in statistical mechanics known as the classical a priori probability.[1] There are related mathematical results in symplectic topology and ergodic theory; systems obeying Liouville's theorem are examples of incompressible dynamical systems.

There are extensions of Liouville's theorem to stochastic systems.[2] Conteúdo 1 Liouville equations 2 Other formulations 2.1 Poisson bracket 2.2 Teoria ergódica 2.3 Symplectic geometry 2.4 Quantum Liouville equation 3 Exemplos 3.1 SHO Phase Space Volume 3.2 Damped Harmonic Oscillator 4 Observações 5 Veja também 6 Referências 7 Leitura adicional 8 External links Liouville equations Evolution of an ensemble of classical systems in phase space (topo). Each system consists of one massive particle in a one-dimensional potential well (curva vermelha, figura inferior). Whereas the motion of an individual member of the ensemble is given by Hamilton's equations, Liouville's equations describe the flow of the whole distribution. The motion is analogous to a dye in an incompressible fluid.

The Liouville equation describes the time evolution of the phase space distribution function. Although the equation is usually referred to as the "Liouville equation", Josiah Willard Gibbs was the first to recognize the importance of this equation as the fundamental equation of statistical mechanics.[3][4] It is referred to as the Liouville equation because its derivation for non-canonical systems utilises an identity first derived by Liouville in 1838.[5][6] Consider a Hamiltonian dynamical system with canonical coordinates {estilo de exibição q_{eu}} and conjugate momenta {estilo de exibição p_{eu}} , Onde {displaystyle i=1,dots ,n} . Then the phase space distribution {estilo de exibição rho (p,q)} determines the probability {estilo de exibição rho (p,q);matemática {d} ^{n}q,matemática {d} ^{n}p} that the system will be found in the infinitesimal phase space volume {matemática de estilo de exibição {d} ^{n}q,matemática {d} ^{n}p} . The Liouville equation governs the evolution of {estilo de exibição rho (p,q;t)} em tempo {estilo de exibição t} : {estilo de exibição {fratura {drho }{dt}}={fratura {partial rho }{partial t}}+soma _{i=1}^{n}deixei({fratura {partial rho }{partial q_{eu}}}{ponto {q}}_{eu}+{fratura {partial rho }{partial p_{eu}}}{ponto {p}}_{eu}certo)=0.} Time derivatives are denoted by dots, and are evaluated according to Hamilton's equations for the system. This equation demonstrates the conservation of density in phase space (which was Gibbs's name for the theorem). Liouville's theorem states that The distribution function is constant along any trajectory in phase space.

A proof of Liouville's theorem uses the n-dimensional divergence theorem. This proof is based on the fact that the evolution of {estilo de exibição rho } obeys an 2n-dimensional version of the continuity equation: {estilo de exibição {fratura {partial rho }{partial t}}+soma _{i=1}^{n}deixei({fratura {parcial (rho {ponto {q}}_{eu})}{partial q_{eu}}}+{fratura {parcial (rho {ponto {p}}_{eu})}{partial p_{eu}}}certo)=0.} Aquilo é, the 3-tuple {estilo de exibição (rho ,rho {ponto {q}}_{eu},rho {ponto {p}}_{eu})} is a conserved current. Notice that the difference between this and Liouville's equation are the terms {displaystyle rho sum _{i=1}^{n}deixei({fratura {parcial {ponto {q}}_{eu}}{partial q_{eu}}}+{fratura {parcial {ponto {p}}_{eu}}{partial p_{eu}}}certo)=rho sum _{i=1}^{n}deixei({fratura {parcial ^{2}H}{partial q_{eu},partial p_{eu}}}-{fratura {parcial ^{2}H}{partial p_{eu}partial q_{eu}}}certo)=0,} Onde {estilo de exibição H} é o hamiltoniano, and Hamilton's equations as well as conservation of the Hamiltonian along the flow have been used. Aquilo é, viewing the motion through phase space as a 'fluid flow' of system points, the theorem that the convective derivative of the density, {displaystyle drho /dt} , is zero follows from the equation of continuity by noting that the 'velocity field' {estilo de exibição ({ponto {p}},{ponto {q}})} in phase space has zero divergence (which follows from Hamilton's relations).[7] Another illustration is to consider the trajectory of a cloud of points through phase space. It is straightforward to show that as the cloud stretches in one coordinate – {estilo de exibição p_{eu}} say – it shrinks in the corresponding {displaystyle q^{eu}} direction so that the product {displaystyle Delta p_{eu},Delta q^{eu}} remains constant.

Other formulations Poisson bracket The theorem above is often restated in terms of the Poisson bracket as {estilo de exibição {fratura {partial rho }{partial t}}=-{,rho ,H,}} ou, in terms of the linear Liouville operator or Liouvillian, {matemática de estilo de exibição {eu} {chapéu largo {mathbf {eu} }}=soma _{i=1}^{n}deixei[{fratura {partial H}{partial p_{eu}}}{fratura {parcial }{partial q^{eu}}}-{fratura {partial H}{partial q^{eu}}}{fratura {parcial }{partial p_{eu}}}certo]={bullet ,H}} Como {estilo de exibição {fratura {partial rho }{partial t}}+{matemática {eu} {chapéu largo {mathbf {eu} }}}rho =0.} Ergodic theory In ergodic theory and dynamical systems, motivated by the physical considerations given so far, there is a corresponding result also referred to as Liouville's theorem. In Hamiltonian mechanics, the phase space is a smooth manifold that comes naturally equipped with a smooth measure (localmente, this measure is the 6n-dimensional Lebesgue measure). The theorem says this smooth measure is invariant under the Hamiltonian flow. De forma geral, one can describe the necessary and sufficient condition under which a smooth measure is invariant under a flow[citação necessária]. The Hamiltonian case then becomes a corollary.

Symplectic geometry We can also formulate Liouville's Theorem in terms of symplectic geometry. For a given system, we can consider the phase space {estilo de exibição (q^{dentro },p_{dentro })} of a particular Hamiltonian {estilo de exibição H} as a manifold {estilo de exibição (M,ómega )} endowed with a symplectic 2-form {displaystyle omega =dp_{dentro }wedge dq^{dentro }.} The volume form of our manifold is the top exterior power of the symplectic 2-form, and is just another representation of the measure on the phase space described above.

On our phase space symplectic manifold we can define a Hamiltonian vector field generated by a function {estilo de exibição f(q,p)} Como {estilo de exibição X_{f}={fratura {f parcial}{partial p_{dentro }}}{fratura {parcial }{partial q^{dentro }}}-{fratura {f parcial}{partial q^{dentro }}}{fratura {parcial }{partial p_{dentro }}}.} Especificamente, when the generating function is the Hamiltonian itself, {estilo de exibição f(q,p)=H} , Nós temos {estilo de exibição X_{H}={fratura {partial H}{partial p_{dentro }}}{fratura {parcial }{partial q^{dentro }}}-{fratura {partial H}{partial q^{dentro }}}{fratura {parcial }{partial p_{dentro }}}={fratura {dq^{dentro }}{dt}}{fratura {parcial }{partial q^{dentro }}}+{fratura {dp^{dentro }}{dt}}{fratura {parcial }{partial p_{dentro }}}={fratura {d}{dt}}} where we utilized Hamilton's equations of motion and the definition of the chain rule.[8] In this formalism, Liouville's Theorem states that the Lie derivative of the volume form is zero along the flow generated by {estilo de exibição X_{H}} . Aquilo é, por {estilo de exibição (M,ómega )} a 2n-dimensional symplectic manifold, {estilo de exibição {matemática {eu}}_{X_{H}}(omega ^{n})=0.} Na verdade, the symplectic structure {displaystyle ômega } itself is preserved, not only its top exterior power. Aquilo é, Liouville's Theorem also gives [9] {estilo de exibição {matemática {eu}}_{X_{H}}(ómega )=0.} Quantum Liouville equation The analog of Liouville equation in quantum mechanics describes the time evolution of a mixed state. Canonical quantization yields a quantum-mechanical version of this theorem, the Von Neumann equation. This procedure, often used to devise quantum analogues of classical systems, involves describing a classical system using Hamiltonian mechanics. Classical variables are then re-interpreted as quantum operators, while Poisson brackets are replaced by commutators. Nesse caso, the resulting equation is[10][11] {estilo de exibição {fratura {partial rho }{partial t}}={fratura {1}{ihbar }}[H,rho ]} where ρ is the density matrix.

When applied to the expectation value of an observable, the corresponding equation is given by Ehrenfest's theorem, and takes the form {estilo de exibição {fratura {d}{dt}}langle Arangle =-{fratura {1}{ihbar }}ângulo [H,UMA]chocalho } Onde {estilo de exibição A} is an observable. Note the sign difference, which follows from the assumption that the operator is stationary and the state is time-dependent.

In the phase space formulation of quantum mechanics, substituting the Moyal brackets for Poisson brackets in the phase-space analog of the von Neumann equation results in compressibility of the probability fluid, and thus violations of Liouville's theorem incompressibility. This, então, leads to concomitant difficulties in defining meaningful quantum trajectories.[citação necessária] Examples SHO Phase Space Volume The time evolution of phase space for the simple harmonic oscillator (SHO). Here we have taken {displaystyle m=omega =1} and are considering the region {estilo de exibição p,qin [-1,1]} .

Consider an {estilo de exibição N} particle system in three dimensions, and focus on only the evolution of {matemática de estilo de exibição {d} {matemática {N}}} particles. Within phase space, esses {matemática de estilo de exibição {d} {matemática {N}}} particles occupy an infinitesimal volume given by {matemática de estilo de exibição {d} Gamma =displaystyle prod _{i=1}^{N}d^{3}p_{eu}d^{3}q_{eu}.} We want {estilo de exibição {fratura {matemática {d} {matemática {N}}}{matemática {d} Gama }}} to remain the same throughout time, de modo a {estilo de exibição rho (Gama ,t)} is constant along the trajectories of the system. If we allow our particles to evolve by an infinitesimal time step {displaystyle delta t} , we see that each particle phase space location changes as {estilo de exibição {começar{casos}q_{eu}'=q_{eu}+{ponto {q_{eu}}}delta t\p_{eu}'=p_{eu}+{ponto {p_{eu}}}delta t,fim{casos}}} Onde {estilo de exibição {ponto {q_{eu}}}} e {estilo de exibição {ponto {p_{eu}}}} denote {estilo de exibição {fratura {dq_{eu}}{dt}}} e {estilo de exibição {fratura {dp_{eu}}{dt}}} respectivamente, and we have only kept terms linear in {displaystyle delta t} . Extending this to our infinitesimal hypercube {matemática de estilo de exibição {d} Gama } , the side lengths change as {estilo de exibição {começar{casos}dq_{eu}'=dq_{eu}+{fratura {parcial {ponto {q_{eu}}}}{partial q_{eu}}}dq_{eu}delta t\dp_{eu}'=dp_{eu}+{fratura {parcial {ponto {p_{eu}}}}{partial p_{eu}}}dp_{eu}delta t.end{casos}}} To find the new infinitesimal phase space volume {matemática de estilo de exibição {d} Gamma '} , we need the product of the above quantities. To first order in {displaystyle delta t} , we get the following.

{displaystyle dq_{eu}'dp_{eu}'=dq_{eu}dp_{eu}deixei[1+deixei({fratura {parcial {ponto {q_{eu}}}}{partial q_{eu}}}+{fratura {parcial {ponto {p_{eu}}}}{partial p_{eu}}}certo)delta tright]} So far, we have yet to make any specifications about our system. Let us now specialize to the case of {estilo de exibição N} {estilo de exibição 3} -dimensional isotropic harmonic oscillators. Aquilo é, each particle in our ensemble can be treated as a simple harmonic oscillator. The Hamiltonian for this system is given by {displaystyle H=displaystyle sum _{i=1}^{3N}deixei({fratura {1}{2m}}p_{eu}^{2}+{fratura {momega ^{2}}{2}}q_{eu}^{2}certo)} By using Hamilton's equations with the above Hamiltonian we find that the term in parentheses above is identically zero, thus yielding {displaystyle dq_{eu}'dp_{eu}'=dq_{eu}dp_{eu}.} From this we can find the infinitesimal volume of phase space.

{matemática de estilo de exibição {d} Gamma '=displaystyle prod _{i=1}^{N}d^{3}q_{eu}'d^{3}p_{eu}'=prod _{i=1}^{N}d^{3}q_{eu}d^{3}p_{eu}=matrm {d} Gama } Thus we have ultimately found that the infinitesimal phase space volume is unchanged, yielding {estilo de exibição rho (Gamma ',t+delta t)={fratura {matemática {d} {matemática {N}}}{matemática {d} Gamma '}}={fratura {matemática {d} {matemática {N}}}{matemática {d} Gama }}=rho (Gama ,t),} demonstrating Liouville's Theorem holds for this system.[12] The question remains of how the phase space volume actually evolves in time. Above we have shown that the total volume is conserved, but said nothing about what it looks like. For a single particle we can see that its trajectory in phase space is given by the ellipse of constant {estilo de exibição H} . Explicitamente, one can solve Hamilton's equations for the system and find {estilo de exibição {começar{alinhado}q_{eu}(t)&=Q_{eu}porque {omega t}+{fratura {P_{eu}}{momega }}pecado {omega t}\p_{eu}(t)&=P_{eu}porque {omega t}-momega Q_{eu}pecado {omega t},fim{alinhado}}} Onde {displaystyle Q_{eu}} e {estilo de exibição P_{eu}} denote the initial position and momentum of the {displaystyle i^{matemática {º} }} particle. For a system of multiple particles, each one will have a phase space trajectory that traces out an ellipse corresponding to the particle's energy. The frequency at which the ellipse is traced is given by the {displaystyle ômega } in the Hamiltonian, independent of any differences in energy. As a result a region of phase space will simply rotate about the point {estilo de exibição (mathbf {q} ,mathbf {p} )=(0,0)} with frequency dependent on {displaystyle ômega } .[13] This can be seen in the animation above.

Damped Harmonic Oscillator The evolution of phase space volume for the damped harmonic oscillator. The same values of parameters are used as in the SHO case, com {displaystyle gamma =0.5;(alpha =0.25)} .

One of the foundational assumptions of Liouville's Theorem is that the system obeys the conservation of energy. In the context of phase space, isso é dizer que {estilo de exibição rho } is constant on phase space surfaces of constant energy {estilo de exibição E} . If we break this requirement by considering a system in which energy is not conserved, nós achamos isso {estilo de exibição rho } also fails to be constant.

As an example of this, consider again the system of {estilo de exibição N} particles each in a {estilo de exibição 3} -dimensional isotropic harmonic potential, the Hamiltonian for which is given in the previous example. This time, we add the condition that each particle experiences a frictional force. As this is a non-conservative force, we need to extend Hamilton's equations as {estilo de exibição {começar{alinhado}{ponto {q_{eu}}}&={fratura {partial H}{partial p_{eu}}}\{ponto {p_{eu}}}&=-{fratura {partial H}{partial q_{eu}}}-gamma p_{eu},fim{alinhado}}} Onde {gama de estilo de exibição } is a positive constant dictating the amount of friction. Following a very similar procedure to the undamped harmonic oscillator case, we arrive again at {displaystyle dq_{eu}'dp_{eu}'=dq_{eu}dp_{eu}deixei[1+deixei({fratura {parcial {ponto {q_{eu}}}}{partial q_{eu}}}+{fratura {parcial {ponto {p_{eu}}}}{partial p_{eu}}}certo)delta tright].} Plugging in our modified Hamilton's equations, nós achamos {estilo de exibição {começar{alinhado}dq_{eu}'dp_{eu}'&=dq_{eu}dp_{eu}deixei[1+deixei({fratura {parcial ^{2}H}{partial q_{eu}partial p_{eu}}}-{fratura {parcial ^{2}H}{partial p_{eu}partial q_{eu}}}-gamma right)delta tright]\&=dq_{eu}dp_{eu}deixei[1-gamma delta tright].fim{alinhado}}} Calculating our new infinitesimal phase space volume, and keeping only first order in {displaystyle delta t} we find the following result.

{matemática de estilo de exibição {d} Gamma '=displaystyle prod _{i=1}^{N}d^{3}q_{eu}'d^{3}p_{eu}'=left[1-gamma delta tright]^{3N}prod _{i=1}^{N}d^{3}q_{eu}d^{3}p_{eu}=matrm {d} gama esquerda[1-3Ngamma delta tright]} We have found that the infinitesimal phase space volume is no longer constant, and thus the phase space density is not conserved. As can be seen from the equation as time increases, we expect our phase space volume to decrease to zero as friction affects the system.

As for how the phase space volume evolves in time, we will still have the constant rotation as in the undamped case. No entanto, the damping will introduce a steady decrease in the radii of each ellipse. Again we can solve for the trajectories explicitly using Hamilton's equations, taking care to use the modified ones above. Letting {displaystyle alpha equiv {fratura {gama }{2}}} for convenience, nós achamos {estilo de exibição {começar{alinhado}q_{eu}(t)&=e^{-alpha t}deixei[Q_{eu}porque {ômega _{1}t}+B_{eu}pecado {ômega _{1}t}certo]&&omega _{1}equivalente {quadrado {omega ^{2}-alfa ^{2}}}\p_{eu}(t)&=e^{-alpha t}deixei[P_{eu}porque {ômega _{1}t}-m(ômega _{1}Q_{eu}+2alpha B_{eu})pecado {ômega _{1}t}certo]&&B_{eu}equivalente {fratura {1}{ômega _{1}}}deixei({fratura {P_{eu}}{m}}+2alpha Q_{eu}certo),fim{alinhado}}} where the values {displaystyle Q_{eu}} e {estilo de exibição P_{eu}} denote the initial position and momentum of the {displaystyle i^{matemática {º} }} particle. As the system evolves the total phase space volume will spiral in to the origin. This can be seen in the figure above.

Remarks The Liouville equation is valid for both equilibrium and nonequilibrium systems. It is a fundamental equation of non-equilibrium statistical mechanics. The Liouville equation is integral to the proof of the fluctuation theorem from which the second law of thermodynamics can be derived. It is also the key component of the derivation of Green–Kubo relations for linear transport coefficients such as shear viscosity, thermal conductivity or electrical conductivity. Virtually any textbook on Hamiltonian mechanics, advanced statistical mechanics, or symplectic geometry will derive the Liouville theorem.[9][14][15][16][17] See also Boltzmann transport equation Reversible reference system propagation algorithm (r-RESPA) References ^ Harald J. C. Müller-Kirsten, Basics of Statistical Physics, 2ª edição, Mundial Científico (Singapore, 2013) ^ Kubo, Ryogo (1963-02-01). "Stochastic Liouville Equations". Revista de Física Matemática. 4 (2): 174–183. Bibcode:1963JMP.....4..174K. doi:10.1063/1.1703941. ISSN 0022-2488. ^ J. C. Gibbs, "On the Fundamental Formula of Statistical Mechanics, with Applications to Astronomy and Thermodynamics." Proceedings of the American Association for the Advancement of Science, 33, 57–58 (1884). Reproduced in The Scientific Papers of J. Willard Gibbs, Vol II (1906), p. 16. ^ Gibbs, Josiah Willard (1902). Elementary Principles in Statistical Mechanics. Nova york: Charles Scribner's Sons. ^ Liouville, Joseph. "Sur la Theorie de la Variation des constantes arbitraires" (PDF). Journal de mathématiques pures et appliquées. 3: 342–349. ^ Ehrendorfer, Martinho. "The Liouville Equation: Fundo - Historical Background". The Liouville Equation in Atmospheric Predictability (PDF). pp. 48–49. ^ Harald J.W. Müller-Kirsten, Introdução à Mecânica Quântica: Schrödinger Equation and Path Integral, 2ª edição, Mundial Científico (Singapore, 2012). ^ Nakahara, Mikio (2003). Geometria, Topologia, and Physics (2 ed.). Taylor & Francis Group. pp. 201-204. ISBN 978-0-7503-0606-5. ^ Saltar para: a b Nash, Oliver (8 Janeiro 2015). "Liouville's theorem for pedants" (PDF). Proves Liouville's theorem using the language of modern differential geometry. ^ The theory of open quantum systems, by Breuer and Petruccione, p 110. ^ Statistical mechanics, by Schwabl, p 16. ^ Kardar, Mehran (2007). Statistical Physics of Particles. University of Cambridge Press. pp. 59-60. ISBN 978-0-521-87342-0. ^ Eastman, Peter (2014–2015). "Evolution of Phase Space Probabilities". ^ For a particularly clear derivation see Tolman, R. C. (1979). The Principles of Statistical Mechanics. Dover. pp. 48–51. ISBN 9780486638966. ^ "Phase Space and Liouville's Theorem". Retrieved January 6, 2014. Nearly identical to proof in this Wikipedia article. Assumes (without proof) the n-dimensional continuity equation. ^ "Preservation of phase space volume and Liouville's theorem". Retrieved January 6, 2014. A rigorous proof based on how the Jacobian volume element transforms under Hamiltonian mechanics. ^ "Physics 127a: Class Notes" (PDF). Retrieved January 6, 2014. Uses the n-dimensional divergence theorem (without proof). Further reading Murugeshan, R. Modern Physics. S. Chand. Misner; Thorne; Wheeler (1973). "Kinetic Theory in Curved Spacetime". Gravitação. homem livre. pp. 583-590. ISBN 9781400889099. links externos "Phase space distribution functions and Liouville's theorem". Categorias: Hamiltonian mechanicsTheorems in dynamical systemsStatistical mechanics theorems

Se você quiser conhecer outros artigos semelhantes a Liouville's theorem (Hamiltonian) você pode visitar a categoria mecânica hamiltoniana.

Ir para cima

Usamos cookies próprios e de terceiros para melhorar a experiência do usuário Mais informação