Lie's third theorem

Lie's third theorem In the mathematics of Lie theory, Lie's third theorem states that every finite-dimensional Lie algebra {style d'affichage {mathfrak {g}}} over the real numbers is associated to a Lie group G. The theorem is part of the Lie group–Lie algebra correspondence.

Historiquement, the third theorem referred to a different but related result. The two preceding theorems of Sophus Lie, restated in modern language, relate to the infinitesimal transformations of a group action on a smooth manifold. The third theorem on the list stated the Jacobi identity for the infinitesimal transformations of a local Lie group. inversement, in the presence of a Lie algebra of vector fields, integration gives a local Lie group action. The result now known as the third theorem provides an intrinsic and global converse to the original theorem.

Contenu 1 Cartan's theorem 2 Voir également 3 Références 4 External links Cartan's theorem The equivalence between the category of simply connected real Lie groups and finite-dimensional real Lie algebras is usually called (in the literature of the second half of 20th century) Cartan's or the Cartan-Lie theorem as it was proved by Élie Cartan. Sophus Lie had previously proved the infinitesimal version: local solvability of the Maurer-Cartan equation, or the equivalence between the category of finite-dimensional Lie algebras and the category of local Lie groups.

Lie listed his results as three direct and three converse theorems. The infinitesimal variant of Cartan's theorem was essentially Lie's third converse theorem. In an influential book[1] Jean-Pierre Serre called it the third theorem of Lie. The name is historically somewhat misleading, but often used in connection to generalizations.

Serre provided two proofs in his book: one based on Ado's theorem and another recounting the proof by Élie Cartan.

See also Lie group integrator References ^ Jean-Pierre Serre (1992)[1965] Lie Algebras and Lie Groups: 1964 Lectures Given at Harvard University, page 152, Springer ISBN 978-3-540-55008-2 Cartan, Élie (1930), "La théorie des groupes finis et continus et l'Analysis Situs", Mémorial Sc. Math., volume. XLII, pp. 1–61 Hall, Brian C.. (2015), Groupes de mensonges, Algèbres de Lie, et Représentations: Une introduction élémentaire, Textes d'études supérieures en mathématiques, volume. 222 (2sd éd.), Springer, est ce que je:10.1007/978-3-319-13467-3, ISBN 978-3319134666 Helgason, Sigurdur (2001), Géométrie différentielle, Lie groups, and symmetric spaces, Études supérieures en mathématiques, volume. 34, Providence, R.I.: Société mathématique américaine, ISBN 978-0-8218-2848-9, M 1834454 External links Encyclopaedia of Mathematics (EoM) article Categories: Lie groupsLie algebrasTheorems about algebras

Si vous voulez connaître d'autres articles similaires à Lie's third theorem vous pouvez visiter la catégorie Lie algebras.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations