Lefschetz fixed-point theorem

Lefschetz fixed-point theorem (Redirected from Lefschetz–Hopf theorem) Jump to navigation Jump to search This article includes a list of general references, aber es fehlen genügend entsprechende Inline-Zitate. Bitte helfen Sie mit, diesen Artikel zu verbessern, indem Sie genauere Zitate einfügen. (Marsch 2022) (Erfahren Sie, wie und wann Sie diese Vorlagennachricht entfernen können) In Mathematik, the Lefschetz fixed-point theorem is a formula that counts the fixed points of a continuous mapping from a compact topological space {Anzeigestil X} to itself by means of traces of the induced mappings on the homology groups of {Anzeigestil X} . It is named after Solomon Lefschetz, who first stated it in 1926.

The counting is subject to an imputed multiplicity at a fixed point called the fixed-point index. A weak version of the theorem is enough to show that a mapping without any fixed point must have rather special topological properties (like a rotation of a circle).

Inhalt 1 Formale Aussage 2 Skizze eines Beweises 3 Lefschetz–Hopf theorem 4 Relation to the Euler characteristic 5 Relation to the Brouwer fixed-point theorem 6 Historical context 7 Frobenius 8 Siehe auch 9 Anmerkungen 10 Verweise 11 External links Formal statement For a formal statement of the theorem, Lassen {displaystyle fcolon Xrightarrow X,} be a continuous map from a compact triangulable space {Anzeigestil X} to itself. Define the Lefschetz number {Anzeigestil Lambda _{f}} von {Anzeigestil f} durch {Anzeigestil Lambda _{f}:= Summe _{kgeq 0}(-1)^{k}Mathrm {tr} (f_{*}|H_{k}(X,mathbb {Q} )),} the alternating (endlich) sum of the matrix traces of the linear maps induced by {Anzeigestil f} an {Anzeigestil H_{k}(X,mathbb {Q} )} , the singular homology groups of {Anzeigestil X} with rational coefficients.

A simple version of the Lefschetz fixed-point theorem states: wenn {Anzeigestil Lambda _{f}neq 0,} dann {Anzeigestil f} has at least one fixed point, d.h., there exists at least one {Anzeigestil x} in {Anzeigestil X} so dass {Anzeigestil f(x)=x} . In der Tat, since the Lefschetz number has been defined at the homology level, the conclusion can be extended to say that any map homotopic to {Anzeigestil f} has a fixed point as well.

Note however that the converse is not true in general: {Anzeigestil Lambda _{f}} may be zero even if {Anzeigestil f} has fixed points.

Sketch of a proof First, by applying the simplicial approximation theorem, one shows that if {Anzeigestil f} has no fixed points, dann (possibly after subdividing {Anzeigestil X} ) {Anzeigestil f} is homotopic to a fixed-point-free simplicial map (d.h., it sends each simplex to a different simplex). This means that the diagonal values of the matrices of the linear maps induced on the simplicial chain complex of {Anzeigestil X} must be all be zero. Then one notes that, Im Algemeinen, the Lefschetz number can also be computed using the alternating sum of the matrix traces of the aforementioned linear maps (this is true for almost exactly the same reason that the Euler characteristic has a definition in terms of homology groups; see below for the relation to the Euler characteristic). In the particular case of a fixed-point-free simplicial map, all of the diagonal values are zero, and thus the traces are all zero.

Lefschetz–Hopf theorem A stronger form of the theorem, also known as the Lefschetz–Hopf theorem, besagt, dass, wenn {Anzeigestil f} has only finitely many fixed points, dann {Anzeigestil Summe _{xin mathrm {Fix} (f)}ich(f,x)=Lambda _{f},} wo {Anzeigestil mathrm {Fix} (f)} is the set of fixed points of {Anzeigestil f} , und {Anzeigestil i(f,x)} denotes the index of the fixed point {Anzeigestil x} .[1] From this theorem one deduces the Poincaré–Hopf theorem for vector fields.

Relation to the Euler characteristic The Lefschetz number of the identity map on a finite CW complex can be easily computed by realizing that each {Anzeigestil f_{Ast }} can be thought of as an identity matrix, and so each trace term is simply the dimension of the appropriate homology group. Thus the Lefschetz number of the identity map is equal to the alternating sum of the Betti numbers of the space, which in turn is equal to the Euler characteristic {Displaystil Chi (X)} . Thus we have {Anzeigestil Lambda _{Mathrm {Ich würde} }=chi (X). } Relation to the Brouwer fixed-point theorem The Lefschetz fixed-point theorem generalizes the Brouwer fixed-point theorem, which states that every continuous map from the {Anzeigestil n} -dimensional closed unit disk {Anzeigestil D^{n}} zu {Anzeigestil D^{n}} must have at least one fixed point.

Dies kann wie folgt gesehen werden: {Anzeigestil D^{n}} is compact and triangulable, all its homology groups except {Anzeigestil H_{0}} are zero, and every continuous map {displaystyle fcolon D^{n}to D^{n}} induces the identity map {Anzeigestil f_{*}colon H_{0}(D^{n},mathbb {Q} )to H_{0}(D^{n},mathbb {Q} )} , whose trace is one; all this together implies that {Anzeigestil Lambda _{f}} is non-zero for any continuous map {displaystyle fcolon D^{n}to D^{n}} .

Historical context Lefschetz presented his fixed-point theorem in (Lefschetz 1926). Lefschetz's focus was not on fixed points of maps, but rather on what are now called coincidence points of maps.

Given two maps {Anzeigestil f} und {Anzeigestil g} from an orientable manifold {Anzeigestil X} to an orientable manifold {Anzeigestil Y} of the same dimension, the Lefschetz coincidence number of {Anzeigestil f} und {Anzeigestil g} is defined as {Anzeigestil Lambda _{f,g}=sum (-1)^{k}Mathrm {tr} (D_{X}circ g^{*}circ D_{Y}^{-1}circ f_{*}),} wo {Anzeigestil f_{*}} is as above, {Anzeigestil g_{*}} is the homomorphism induced by {Anzeigestil g} on the cohomology groups with rational coefficients, und {displaystyle D_{X}} und {displaystyle D_{Y}} are the Poincaré duality isomorphisms for {Anzeigestil X} und {Anzeigestil Y} , beziehungsweise.

Lefschetz proved that if the coincidence number is nonzero, dann {Anzeigestil f} und {Anzeigestil g} have a coincidence point. He noted in his paper that letting {displaystyle X=Y} and letting {Anzeigestil g} be the identity map gives a simpler result, which we now know as the fixed-point theorem.

Frobenius Let {Anzeigestil X} be a variety defined over the finite field {Anzeigestil k} mit {Anzeigestil q} elements and let {Anzeigestil {Bar {X}}} be the base change of {Anzeigestil X} to the algebraic closure of {Anzeigestil k} . The Frobenius endomorphism of {Anzeigestil {Bar {X}}} (often the geometric Frobenius, or just the Frobenius), bezeichnet durch {Anzeigestil F_{q}} , maps a point with coordinates {Anzeigestil x_{1},Punkte ,x_{n}} to the point with coordinates {Anzeigestil x_{1}^{q},Punkte ,x_{n}^{q}} . Thus the fixed points of {Anzeigestil F_{q}} are exactly the points of {Anzeigestil X} with coordinates in {Anzeigestil k} ; the set of such points is denoted by {Anzeigestil X(k)} . The Lefschetz trace formula holds in this context, and reads: {displaystyle #X(k)= Summe _{ich}(-1)^{ich}Mathrm {tr} (F_{q}^{*}|H_{c}^{ich}({Bar {X}},mathbb {Q} _{Ell })).} This formula involves the trace of the Frobenius on the étale cohomology, with compact supports, von {Anzeigestil {Bar {X}}} with values in the field of {Anzeigestil ell } -adic numbers, wo {Anzeigestil ell } is a prime coprime to {Anzeigestil q} .

Wenn {Anzeigestil X} is smooth and equidimensional, this formula can be rewritten in terms of the arithmetic Frobenius {displaystyle Phi _{q}} , which acts as the inverse of {Anzeigestil F_{q}} on cohomology: {displaystyle #X(k)=q^{dim X}Summe _{ich}(-1)^{ich}Mathrm {tr} ((Phi_{q}^{-1})^{*}|H^{ich}({Bar {X}},mathbb {Q} _{Ell })).} This formula involves usual cohomology, rather than cohomology with compact supports.

The Lefschetz trace formula can also be generalized to algebraic stacks over finite fields.

See also Fixed-point theorems Lefschetz zeta function Holomorphic Lefschetz fixed-point formula Notes ^ Dold, Albrechts (1980). Lectures on algebraic topology. Vol. 200 (2und Aufl.). Berlin, New York: Springer-Verlag. ISBN 978-3-540-10369-1. HERR 0606196., Proposition VII.6.6. References Lefschetz, Solomon (1926). "Intersections and transformations of complexes and manifolds". Transaktionen der American Mathematical Society. 28 (1): 1–49. doi:10.2307/1989171. JSTOR 1989171. HERR 1501331. Lefschetz, Solomon (1937). "On the fixed point formula". Annalen der Mathematik. 38 (4): 819–822. doi:10.2307/1968838. JSTOR 1968838. HERR 1503373. Externe Links "Lefschetz formula", Enzyklopädie der Mathematik, EMS-Presse, 2001 [1994] Autoritätskontrolle: National libraries Germany Categories: Fixed-point theoremsContinuous mappingsTheorems in algebraic topology

Wenn Sie andere ähnliche Artikel wissen möchten Lefschetz fixed-point theorem Sie können die Kategorie besuchen Continuous mappings.

Hinterlasse eine Antwort

Deine Email-Adresse wird nicht veröffentlicht.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen