Lee Hwa Chung theorem

Lee Hwa Chung theorem The Lee Hwa Chung theorem is a theorem in symplectic topology.
A afirmação é a seguinte. Let M be a symplectic manifold with symplectic form ω. Deixar {alfa de estilo de exibição } be a differential k-form on M which is invariant for all Hamiltonian vector fields. Então: If k is odd, {displaystyle alpha =0.} If k is even, {displaystyle alpha =ctimes omega ^{wedge {fratura {k}{2}}}} , Onde {displaystyle cin mathbb {R} .} References Lee, John M., Introduction to Smooth Manifolds, Springer-Verlag, Nova york (2003) ISBN 0-387-95495-3. Graduate-level textbook on smooth manifolds. Hwa-Chung, Lee, "The Universal Integral Invariants of Hamiltonian Systems and Application to the Theory of Canonical Transformations", Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences, 62(03), 237–246. doi:10.1017/s0080454100006646 This differential geometry related article is a stub. Você pode ajudar a Wikipédia expandindo-a.
Categorias: Symplectic topologyTheorems in differential geometryDifferential geometry stubs
Se você quiser conhecer outros artigos semelhantes a Lee Hwa Chung theorem você pode visitar a categoria Differential geometry stubs.
Deixe uma resposta