# Le Cam's theorem

Le Cam's theorem In probability theory, Le Cam's theorem, named after Lucien Le Cam (1924 – 2000), states the following.[1][2][3] Vermuten: {Anzeigestil X_{1},X_{2},X_{3},Punkte } are independent random variables, each with a Bernoulli distribution (d.h., equal to either 0 oder 1), not necessarily identically distributed. {Anzeigestil Pr(X_{ich}=1)=p_{ich},{Text{ zum }}i=1,2,3,ldots .} {Anzeigestil Lambda _{n}=p_{1}+cdots +p_{n}.} {Anzeigestil S_{n}=X_{1}+cPunkte +X_{n}.} (d.h. {Anzeigestil S_{n}} follows a Poisson binomial distribution) Dann {Anzeigestil Summe _{k=0}^{unendlich }links|Pr(S_{n}=k)-{Lambda _{n}^{k}e^{-Lambda _{n}} über k!}Rechts|<2left(sum _{i=1}^{n}p_{i}^{2}right).} In other words, the sum has approximately a Poisson distribution and the above inequality bounds the approximation error in terms of the total variation distance. By setting pi = λn/n, we see that this generalizes the usual Poisson limit theorem. When {displaystyle lambda _{n}} is large a better bound is possible: {displaystyle sum _{k=0}^{infty }left|Pr(S_{n}=k)-{lambda _{n}^{k}e^{-lambda _{n}} over k!}right|<2left(1wedge {frac {1}{lambda }}_{n}right)left(sum _{i=1}^{n}p_{i}^{2}right).} [4] It is also possible to weaken the independence requirement.[4] References ^ Le Cam, L. (1960). "An Approximation Theorem for the Poisson Binomial Distribution". Pacific Journal of Mathematics. 10 (4): 1181–1197. doi:10.2140/pjm.1960.10.1181. MR 0142174. Zbl 0118.33601. Retrieved 2009-05-13. ^ Le Cam, L. (1963). "On the Distribution of Sums of Independent Random Variables". In Jerzy Neyman; Lucien le Cam (eds.). Bernoulli, Bayes, Laplace: Proceedings of an International Research Seminar. New York: Springer-Verlag. pp. 179–202. MR 0199871. ^ Steele, J. M. (1994). "Le Cam's Inequality and Poisson Approximations". The American Mathematical Monthly. 101 (1): 48–54. doi:10.2307/2325124. JSTOR 2325124. ^ Jump up to: a b den Hollander, Frank. Probability Theory: the Coupling Method. External links Weisstein, Eric W. "Le Cam's Inequality". MathWorld. Categories: Probability theoremsProbabilistic inequalitiesStatistical inequalitiesTheorems in statistics

Wenn Sie andere ähnliche Artikel wissen möchten Le Cam's theorem Sie können die Kategorie besuchen Probabilistic inequalities.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen