Lax–Wendroff theorem

Lax–Wendroff theorem In computational mathematics, the Lax–Wendroff theorem, named after Peter Lax and Burton Wendroff, states that if a conservative numerical scheme for a hyperbolic system of conservation laws converges, then it converges towards a weak solution.
See also Lax–Wendroff method Godunov's scheme References Randall J. LeVeque, Numerical methods for conservation laws, Birkhäuser, 1992 ISBN 978-3-7643-2723-1 This applied mathematics-related article is a stub. You can help Wikipedia by expanding it.
Categories: Numerical differential equationsComputational fluid dynamicsTheorems in analysisApplied mathematics stubs
Si quieres conocer otros artículos parecidos a Lax–Wendroff theorem puedes visitar la categoría Computational fluid dynamics.
Deja una respuesta