Lami's theorem

Lami's theorem In physics, Lami's theorem is an equation relating the magnitudes of three coplanar, concurrent and non-collinear vectors, which keeps an object in static equilibrium, with the angles directly opposite to the corresponding vectors. Nach dem Satz, {Anzeigestil {frac {EIN}{sin alpha }}={frac {B}{sin beta }}={frac {C}{sin gamma }}} wo ein, B and C are the magnitudes of the three coplanar, concurrent and non-collinear vectors, {Anzeigestil V_{EIN},V_{B},V_{C}} , which keep the object in static equilibrium, and α, β and γ are the angles directly opposite to the vectors.[1] Lami's theorem is applied in static analysis of mechanical and structural systems. The theorem is named after Bernard Lamy.[2] Inhalt 1 Nachweisen 2 Siehe auch 3 Verweise 4 Further reading Proof As the vectors must balance {Anzeigestil V_{EIN}+V_{B}+V_{C}=0} , hence by making all the vectors touch its tip and tail we can get a triangle with sides A,B,C and angles {displaystyle 180^{Ö}-Alpha ,180^{Ö}-Beta ,180^{Ö}-Gamma } . By the law of sines then[1] {Anzeigestil {frac {EIN}{Sünde(180^{Ö}-Alpha )}}={frac {B}{Sünde(180^{Ö}-Beta )}}={frac {C}{Sünde(180^{Ö}-Gamma )}}.} Then by applying that for any angle {Theta im Display-Stil } , {Displaystyle-Sünde(180^{Ö}-Theta )=sin theta } wir erhalten {Anzeigestil {frac {EIN}{sin alpha }}={frac {B}{sin beta }}={frac {C}{sin gamma }}.} See also Mechanical equilibrium Parallelogram of force Tutte embedding References ^ Jump up to: a b Dubey, N. H. (2013). Engineering Mechanics: Statics and Dynamics. Tata McGraw-Hill Education. ISBN 9780071072595. ^ "Lami's Theorem - Oxford Reference". Abgerufen 2018-10-03. Further reading R.K. Bansal (2005). "A Textbook of Engineering Mechanics". Laxmi Publications. p. 4. ISBN 978-81-7008-305-4. I.S. Gujral (2008). "Engineering Mechanics". Firewall Media. p. 10. ISBN 978-81-318-0295-3 Kategorien: StaticsPhysics theorems

Wenn Sie andere ähnliche Artikel wissen möchten Lami's theorem Sie können die Kategorie besuchen Physics theorems.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen