# L-balance theorem L-balance theorem In mathematical finite group theory, the L-balance theorem was proved by Gorenstein & Walter (1975). The letter L stands for the layer of a group, et "balance" refers to the property discussed below.

Statement The L-balance theorem of Gorenstein and Walter states that if X is a finite group and T a 2-subgroup of X then {displaystyle L_{2'}(C_{X}(J))leq L_{2'}(X)} Here L2′(X) stands for the 2-layer of a group X, which is the product of all the 2-components of the group, the minimal subnormal subgroups of X mapping onto components of X/O(X).

A consequence is that if a and b are commuting involutions of a group G then {displaystyle L_{2'}(L_{2'}(C_{un})cap C_{b})=L_{2'}(L_{2'}(C_{b})cap C_{un})} This is the property called L-balance.

More generally similar results are true if the prime 2 is replaced by a prime p, and in this case the condition is called Lp-balance, but the proof of this requires the classification of finite simple groups (more precisely the Schreier conjecture).

References Gorenstein, RÉ.; Walter, John H. (1975), "Balance and generation in finite groups", Journal d'algèbre, 33: 224–287, est ce que je:10.1016/0021-8693(75)90123-4, ISSN 0021-8693, M 0357583 Catégories: Theorems about finite groups

Si vous voulez connaître d'autres articles similaires à L-balance theorem vous pouvez visiter la catégorie Theorems about finite groups.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations