L-balance theorem

L-balance theorem In mathematical finite group theory, the L-balance theorem was proved by Gorenstein & Walter (1975). The letter L stands for the layer of a group, et "balance" refers to the property discussed below.

Statement The L-balance theorem of Gorenstein and Walter states that if X is a finite group and T a 2-subgroup of X then {displaystyle L_{2'}(C_{X}(J))leq L_{2'}(X)} Here L2′(X) stands for the 2-layer of a group X, which is the product of all the 2-components of the group, the minimal subnormal subgroups of X mapping onto components of X/O(X).

A consequence is that if a and b are commuting involutions of a group G then {displaystyle L_{2'}(L_{2'}(C_{un})cap C_{b})=L_{2'}(L_{2'}(C_{b})cap C_{un})} This is the property called L-balance.

More generally similar results are true if the prime 2 is replaced by a prime p, and in this case the condition is called Lp-balance, but the proof of this requires the classification of finite simple groups (more precisely the Schreier conjecture).

References Gorenstein, RÉ.; Walter, John H. (1975), "Balance and generation in finite groups", Journal d'algèbre, 33: 224–287, est ce que je:10.1016/0021-8693(75)90123-4, ISSN 0021-8693, M 0357583 Catégories: Theorems about finite groups

Si vous voulez connaître d'autres articles similaires à L-balance theorem vous pouvez visiter la catégorie Theorems about finite groups.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations