Kuhn's theorem

Kuhn's theorem In game theory, Kuhn's theorem relates perfect recall, mixed and unmixed strategies and their expected payoffs. It is named after Harold W. Kuhn.

The theorem states that in a game where players may remember all of their previous moves/states of the game available to them, for every mixed strategy there is a behavioral strategy that has an equivalent payoff (c'est à dire. the strategies are equivalent). The theorem does not specify what this strategy is, only that it exists. It is valid both for finite games, as well as infinite games (c'est à dire. games with continuous choices, or iterated infinitely).[1] References ^ Aumann, robert (1964), "Mixed and behavior strategies in infinite extensive games", in Dresher, M; Shapley, L. S; Tucker, UN. O. (éd.), Advances in Game Theory, Annales d'études mathématiques, volume. 52, Princeton, New Jersey, Etats-Unis: Presse de l'Université de Princeton, pp. 627–650, ISBN 9780691079028.

Cet article sur la théorie des jeux est un bout. Vous pouvez aider Wikipédia en l'agrandissant.

Catégories: Game theoryMathematical economicsEconomics theoremsMicroeconomics stubsEconomic theories stubs

Si vous voulez connaître d'autres articles similaires à Kuhn's theorem vous pouvez visiter la catégorie Théorèmes économiques.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations