Kuhn's theorem

Kuhn's theorem In game theory, Kuhn's theorem relates perfect recall, mixed and unmixed strategies and their expected payoffs. It is named after Harold W. Kuhn.
The theorem states that in a game where players may remember all of their previous moves/states of the game available to them, for every mixed strategy there is a behavioral strategy that has an equivalent payoff (d.h. the strategies are equivalent). The theorem does not specify what this strategy is, only that it exists. It is valid both for finite games, as well as infinite games (d.h. games with continuous choices, or iterated infinitely).[1] References ^ Aumann, Robert (1964), "Mixed and behavior strategies in infinite extensive games", in Dresher, M.; Shapley, L. S.; Tucker, EIN. W. (Hrsg.), Advances in Game Theory, Annalen der Mathematikstudien, vol. 52, Princeton, NJ, Vereinigte Staaten von Amerika: Princeton University Press, pp. 627–650, ISBN 9780691079028.
Dieser Spieltheorie-Artikel ist ein Stummel. Sie können Wikipedia helfen, indem Sie es erweitern.
Kategorien: Game theoryMathematical economicsEconomics theoremsMicroeconomics stubsEconomic theories stubs
Wenn Sie andere ähnliche Artikel wissen möchten Kuhn's theorem Sie können die Kategorie besuchen Ökonomische Theoreme.
Hinterlasse eine Antwort