Krener's theorem

Krener's theorem In mathematics, Krener's theorem is a result attributed to Arthur J. Krener in geometric control theory about the topological properties of attainable sets of finite-dimensional control systems. It states that any attainable set of a bracket-generating system has nonempty interior or, de manière équivalente, that any attainable set has nonempty interior in the topology of the corresponding orbit. Heuristically, Krener's theorem prohibits attainable sets from being hairy.

Theorem Let {style d'affichage { }{point {q}}=f(q,tu)} be a smooth control system, où {style d'affichage { q}} belongs to a finite-dimensional manifold {style d'affichage M} et {style d'affichage u} belongs to a control set {style d'affichage U} . Consider the family of vector fields {style d'affichage {mathématique {F}}={F(cdot ,tu)mid uin U}} .

Laisser {style d'affichage mathrm {Lie} ,{mathématique {F}}} be the Lie algebra generated by {style d'affichage {mathématique {F}}} with respect to the Lie bracket of vector fields. Given {displaystyle qin M} , if the vector space {style d'affichage mathrm {Lie} _{q},{mathématique {F}}={g(q)mid gin mathrm {Lie} ,{mathématique {F}}}} est égal à {style d'affichage T_{q}M} , alors {style d'affichage q} belongs to the closure of the interior of the attainable set from {style d'affichage q} .

Remarks and consequences Even if {style d'affichage mathrm {Lie} _{q},{mathématique {F}}} is different from {style d'affichage T_{q}M} , the attainable set from {style d'affichage q} has nonempty interior in the orbit topology, as it follows from Krener's theorem applied to the control system restricted to the orbit through {style d'affichage q} .

When all the vector fields in {style d'affichage {mathématique {F}}} are analytic, {style d'affichage mathrm {Lie} _{q},{mathématique {F}}=T_{q}M} si et seulement si {style d'affichage q} belongs to the closure of the interior of the attainable set from {style d'affichage q} . This is a consequence of Krener's theorem and of the orbit theorem.

As a corollary of Krener's theorem one can prove that if the system is bracket-generating and if the attainable set from {displaystyle qin M} est dense en {style d'affichage M} , then the attainable set from {style d'affichage q} is actually equal to {style d'affichage M} .

References Agrachev, Andrei A.; Sachkov, Yuri L. (2004). Control theory from the geometric viewpoint. Springer Verlag. pp. xiv+412. ISBN 3-540-21019-9. Jurdjevic, Velimir (1997). Geometric control theory. la presse de l'Universite de Cambridge. pp. xviii+492. ISBN 0-521-49502-4.[permanent dead link] Sussmann, Héctor J.; Jurdjevic, Velimir (1972). "Controllability of nonlinear systems". J. Differential Equations. 12 (1): 95–116. est ce que je:10.1016/0022-0396(72)90007-1. Krener, Arthur J. (1974). "A generalization of Chow's theorem and the bang-bang theorem to non-linear control problems". SIAM J. Control Optim. 12: 43–52. est ce que je:10.1137/0312005. Catégories: Control theoryTheorems in dynamical systems

Si vous voulez connaître d'autres articles similaires à Krener's theorem vous pouvez visiter la catégorie Control theory.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations