Kneser's theorem (differential equations)

Kneser's theorem (differential equations) En mathématiques, dans le domaine des équations différentielles ordinaires, the Kneser theorem, named after Adolf Kneser, provides criteria to decide whether a differential equation is oscillating or not.

Contenu 1 Énoncé du théorème 2 Exemple 3 Rallonges 4 References Statement of the theorem Consider an ordinary linear homogeneous differential equation of the form {displaystyle y''+q(X)y=0} avec {style d'affichage q:[0,+infime )à mathbb {R} } continu. We say this equation is oscillating if it has a solution y with infinitely many zeros, and non-oscillating otherwise.

The theorem states[1] that the equation is non-oscillating if {style d'affichage limsup _{xto +infty }x^{2}q(X)<{tfrac {1}{4}}} and oscillating if {displaystyle liminf _{xto +infty }x^{2}q(x)>{tfrac {1}{4}}.} Example To illustrate the theorem consider {style d'affichage q(X)=gauche({frac {1}{4}}-un droit)x^{-2}quad {texte{pour}}quad x>0} où {style d'affichage a} is real and non-zero. D'après le théorème, solutions will be oscillating or not depending on whether {style d'affichage a} is positive (non-oscillating) or negative (oscillating) car {style d'affichage limsup _{xto +infty }x^{2}q(X)=liminf _{xto +infty }x^{2}q(X)={frac {1}{4}}-un} To find the solutions for this choice of {style d'affichage q(X)} , and verify the theorem for this example, substitute the 'Ansatz' {style d'affichage y(X)=x^{n}} qui donne {displaystyle n(n-1)+{frac {1}{4}}-a=left(n-{frac {1}{2}}droit)^{2}-a=0} Cela signifie que (for non-zero {style d'affichage a} ) the general solution is {style d'affichage y(X)=Ax^{{frac {1}{2}}+{sqrt {un}}}+Bx^{{frac {1}{2}}-{sqrt {un}}}} où {style d'affichage A} et {style d'affichage B} are arbitrary constants.

It is not hard to see that for positive {style d'affichage a} the solutions do not oscillate while for negative {displaystyle a=-omega ^{2}} the identity {style d'affichage x^{{frac {1}{2}}pm iomega }={sqrt {X}} e ^{pm (iomega )dans {X}}={sqrt {X}} (parce que {(omega ln x)}pm isin {(omega ln x)})} shows that they do.

The general result follows from this example by the Sturm–Picone comparison theorem.

Extensions There are many extensions to this result. For a recent account see.[2] References ^ Teschl, Gerald (2012). Ordinary Differential Equations and Dynamical Systems. Providence: Société mathématique américaine. ISBN 978-0-8218-8328-0. ^ Helge Krüger and Gerald Teschl, Effective Prüfer angles and relative oscillation criteria, J. Diff. Éq. 245 (2008), 3823–3848 [1] Catégories: Ordinary differential equationsTheorems in analysisOscillation

Si vous voulez connaître d'autres articles similaires à Kneser's theorem (differential equations) vous pouvez visiter la catégorie Ordinary differential equations.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations