# Kneser's theorem (differential equations)

Kneser's theorem (differential equations) In Mathematik, auf dem Gebiet der gewöhnlichen Differentialgleichungen, the Kneser theorem, named after Adolf Kneser, provides criteria to decide whether a differential equation is oscillating or not.

Inhalt 1 Aussage des Theorems 2 Beispiel 3 Erweiterungen 4 References Statement of the theorem Consider an ordinary linear homogeneous differential equation of the form {displaystyle y''+q(x)y=0} mit {Anzeigestil q:[0,+unendlich )zu mathbb {R} } kontinuierlich. We say this equation is oscillating if it has a solution y with infinitely many zeros, and non-oscillating otherwise.

The theorem states[1] that the equation is non-oscillating if {displaystyle limsup _{xto +infty }x^{2}q(x)<{tfrac {1}{4}}} and oscillating if {displaystyle liminf _{xto +infty }x^{2}q(x)>{tfrac {1}{4}}.} Example To illustrate the theorem consider {Anzeigestil q(x)=links({frac {1}{4}}-recht)x^{-2}Quad {Text{zum}}quad x>0} wo {Anzeigestil a} is real and non-zero. Nach dem Satz, solutions will be oscillating or not depending on whether {Anzeigestil a} is positive (non-oscillating) or negative (oscillating) Weil {displaystyle limsup _{xto +infty }x^{2}q(x)=liminf _{xto +infty }x^{2}q(x)={frac {1}{4}}-a} To find the solutions for this choice of {Anzeigestil q(x)} , and verify the theorem for this example, substitute the 'Ansatz' {Anzeigestil y(x)=x^{n}} which gives {Anzeigestil n(n-1)+{frac {1}{4}}-a=left(n-{frac {1}{2}}Rechts)^{2}-a=0} Das bedeutet, dass (for non-zero {Anzeigestil a} ) the general solution is {Anzeigestil y(x)=Ax^{{frac {1}{2}}+{quadrat {a}}}+Bx^{{frac {1}{2}}-{quadrat {a}}}} wo {Anzeigestil A} und {Anzeigestil B} are arbitrary constants.

It is not hard to see that for positive {Anzeigestil a} the solutions do not oscillate while for negative {displaystyle a=-omega ^{2}} the identity {Anzeigestil x^{{frac {1}{2}}pm iomega }={quadrat {x}} e^{pm (iomega )ln {x}}={quadrat {x}} (cos {(omega ln x)}pm isin {(omega ln x)})} shows that they do.

The general result follows from this example by the Sturm–Picone comparison theorem.

Extensions There are many extensions to this result. For a recent account see.[2] References ^ Teschl, Gerhard (2012). Gewöhnliche Differentialgleichungen und dynamische Systeme. Vorsehung: Amerikanische Mathematische Gesellschaft. ISBN 978-0-8218-8328-0. ^ Helge Krüger and Gerald Teschl, Effective Prüfer angles and relative oscillation criteria, J. Diff. Gl. 245 (2008), 3823–3848 [1] Kategorien: Ordinary differential equationsTheorems in analysisOscillation

Wenn Sie andere ähnliche Artikel wissen möchten Kneser's theorem (differential equations) Sie können die Kategorie besuchen Ordinary differential equations.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen