Kinoshita–Lee–Nauenberg theorem

Kinoshita–Lee–Nauenberg theorem The Kinoshita–Lee–Nauenberg theorem or KLN theorem states that perturbatively the standard model as a whole is infrared (IR) finite. That is, the infrared divergences coming from loop integrals are canceled by IR divergences coming from phase space integrals. It was introduced independently by Kinoshita (1962) and Tsung-Dao Lee and Michael Nauenberg (1964).

An analogous result for quantum electrodynamics alone is known as Bloch–Nordsieck theorem.

Ultraviolet divergences in perturbative quantum field theory are dealt with in renormalization.

References Kinoshita, Toichiro (1962), "Mass Singularities of Feynman Amplitudes", Journal of Mathematical Physics, 3: 650, Bibcode:1962JMP.....3..650K, doi:10.1063/1.1724268, ISSN 0022-2488 Lee, Tsung-Dao; Nauenberg, Michael (1964), "Degenerate Systems and Mass Singularities", Physical Review D, 133: B1549, Bibcode:1964PhRv..133.1549L, doi:10.1103/PhysRev.133.B1549 Bloch, Felix; Nordsieck, Arnold (1937), "Note on the Radiation Field of the Electron", Physical Review, 52 (2): 54–59, doi:10.1103/PhysRev.52.54 Taizo Muta, Foundations of Quantum Chromodynamics: An Introduction to Perturbative Methods in Gauge Theories, World Scientific Publishing Company; 3 edition (September 30, 2009) This quantum mechanics-related article is a stub. You can help Wikipedia by expanding it.

Categories: Standard ModelQuantum field theoryTheorems in quantum mechanicsQuantum physics stubs

Si quieres conocer otros artículos parecidos a Kinoshita–Lee–Nauenberg theorem puedes visitar la categoría Quantum field theory.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.


Utilizamos cookies propias y de terceros para mejorar la experiencia de usuario Más información