Teorema di Killing-Hopf

Killing–Hopf theorem In geometry, the Killing–Hopf theorem states that complete connected Riemannian manifolds of constant curvature are isometric to a quotient of a sphere, Euclidean space, or hyperbolic space by a group acting freely and properly discontinuously. These manifolds are called space forms. The Killing–Hopf theorem was proved by Killing (1891) and Hopf (1926).

References Hopf, Heinz (1926), "Zum Clifford-Kleinschen Raumproblem", Annali matematici, 95 (1): 313–339, doi:10.1007/BF01206614, ISSN 0025-5831 Killing, Guglielmo (1891), "Ueber die Clifford-Klein'schen Raumformen", Annali matematici, 39 (2): 257–278, doi:10.1007/BF01206655, ISSN 0025-5831 This geometry-related article is a stub. Puoi aiutare Wikipedia espandendolo.

nascondi i collettori (Glossario) Basic concepts Topological manifold AtlasDifferentiable/Smooth manifold Differential structureSmooth atlasSubmanifoldRiemannian manifoldSmooth mapSubmersionPushforwardTangent spaceDifferential formVector field Main results (elenco) Atiyah–Singer indexDarboux'sDe Rham'sFrobeniusGeneralized StokesHopf–RinowNoether'sSard'sWhitney embedding Maps CurveDiffeomorphism LocalGeodesicExponential map in Lie theoryFoliationImmersionIntegral curveLie derivativeSectionSubmersion Types of manifolds Closed(Quasi) Complex(Quasi) ContactFiberedFinslerFlatG-structureHadamardHermitianHyperbolicKählerKenmotsuLie group Lie algebraManifold with boundaryOrientedParallelizablePoissonPrimeQuaternionicHypercomplex(Pseudo-, Sub−) RiemannianRizza(Quasi) SymplecticTame Tensors Vectors DistributionLie bracketPushforwardTangent space bundleTorsionVector fieldVector flow Covectors Closed/ExactCovariant derivativeCotangent space bundleDe Rham cohomologyDifferential form Vector-valuedExterior derivativeInterior productPullbackRicci curvature flowRiemann curvature tensorTensor field densityVolume formWedge product Bundles AdjointAffineAssociatedCotangentDualFiber(co) FibrationJetLie algebra(Stabile) NormalPrincipalSpinorSubbundleTangentTensorVector Connections AffineCartanEhresmannFormGeneralizedKoszulLevi-CivitaPrincipalVectorParallel transport Related Classification of manifoldsGauge theoryHistoryMorse theoryMoving frameSingularity theory Generalizations Banach manifoldDiffeologyDiffietyFréchet manifoldK-theoryOrbifoldSecondary calculus over commutative algebrasSheafStratifoldSupermanifoldTopologically stratified space Categories: Geometry stubsRiemannian geometryTheorems in Riemannian geometry

Se vuoi conoscere altri articoli simili a Teorema di Killing-Hopf puoi visitare la categoria Geometry stubs.

lascia un commento

L'indirizzo email non verrà pubblicato.

Vai su

Utilizziamo cookie propri e di terze parti per migliorare l'esperienza dell'utente Maggiori informazioni