Teorema de Jurkat-Richert

Jurkat–Richert theorem The Jurkat–Richert theorem is a mathematical theorem in sieve theory. It is a key ingredient in proofs of Chen's theorem on Goldbach's conjecture.[1]: 272  It was proved in 1965 by Wolfgang B. Jurkat and Hans-Egon Richert.[2] Statement of the theorem This formulation is from Diamond & Halberstam.[3]: 81  Other formulations are in Jurkat & Richert,[2]: 230  Halberstam & Richert,[4]: 231  and Nathanson.[1]: 257  Suppose A is a finite sequence of integers and P is a set of primes. Write Ad for the number of items in A that are divisible by d, and write P(z) for the product of the elements in P that are less than z. Write ω(d) for a multiplicative function such that ω(p)/p is approximately the proportion of elements of A divisible by p, write X for any convenient approximation to |UMA|, and write the remainder as {estilo de exibição r_{UMA}(d)= esquerda|UMA_{d}certo|-{fratura {ómega (d)}{d}}X.} Write S(UMA,P,z) for the number of items in A that are relatively prime to P(z). Write {estilo de exibição V(z)=prod_{pin P,p

Se você quiser conhecer outros artigos semelhantes a Teorema de Jurkat-Richert você pode visitar a categoria teoria da peneira.

Deixe uma resposta

seu endereço de e-mail não será publicado.

Ir para cima

Usamos cookies próprios e de terceiros para melhorar a experiência do usuário Mais informação