Jurkat–Richert theorem

Jurkat–Richert theorem The Jurkat–Richert theorem is a mathematical theorem in sieve theory. It is a key ingredient in proofs of Chen's theorem on Goldbach's conjecture.[1]: 272  It was proved in 1965 by Wolfgang B. Jurkat and Hans-Egon Richert.[2] Statement of the theorem This formulation is from Diamond & Halberstam.[3]: 81  Other formulations are in Jurkat & Richert,[2]: 230  Halberstam & Richert,[4]: 231  and Nathanson.[1]: 257  Suppose A is a finite sequence of integers and P is a set of primes. Write Ad for the number of items in A that are divisible by d, and write P(z) for the product of the elements in P that are less than z. Write ω(ré) for a multiplicative function such that ω(p)/p is approximately the proportion of elements of A divisible by p, write X for any convenient approximation to |UN|, and write the remainder as {style d'affichage r_{UN}(ré)=gauche|UN_{ré}droit|-{frac {oméga (ré)}{ré}}X.} Write S(UN,P,z) for the number of items in A that are relatively prime to P(z). Write {style d'affichage V(z)=produit _{pin P,p

Si vous voulez connaître d'autres articles similaires à Jurkat–Richert theorem vous pouvez visiter la catégorie Sieve theory.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations