Jordan's theorem (symmetric group)

Jordan's theorem (symmetric group)   (Redirected from Jordan's theorem (multiply transitive groups)) Jump to navigation Jump to search In finite group theory, Jordan's theorem states that if a primitive permutation group G is a subgroup of the symmetric group Sn and contains a p-cycle for some prime number p < n − 2, then G is either the whole symmetric group Sn or the alternating group An. It was first proved by Camille Jordan. The statement can be generalized to the case that p is a prime power. References Griess, Robert L. (1998), Twelve sporadic groups, Springer, p. 5, ISBN 978-3-540-62778-4 Isaacs, I. Martin (2008), Finite group theory, AMS, p. 245, ISBN 978-0-8218-4344-4 Neuman, Peter M. (1975), "Primitive permutation groups containing a cycle of prime power length", Bulletin of the London Mathematical Society, 7 (3): 298–299, doi:10.1112/blms/7.3.298, archived from the original on 2013-04-15 External links Jordan's Symmetric Group Theorem on Mathworld This algebra-related article is a stub. You can help Wikipedia by expanding it. Categories: Algebra stubsPermutation groupsTheorems about finite groups

Si quieres conocer otros artículos parecidos a Jordan's theorem (symmetric group) puedes visitar la categoría Algebra stubs.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.


Utilizamos cookies propias y de terceros para mejorar la experiencia de usuario Más información