Japanese theorem for cyclic polygons

Japanese theorem for cyclic polygons (Redirected from Japanese theorem for concyclic polygons) Jump to navigation Jump to search In geometry, the Japanese theorem states that no matter how one triangulates a cyclic polygon, the sum of inradii of triangles is constant.[1]:p. 193  sum of the radii of the green circles = sum of the radii of the red circles Conversely, if the sum of inradii is independent of the triangulation, then the polygon is cyclic. The Japanese theorem follows from Carnot's theorem; it is a Sangaku problem.

Proof This theorem can be proven by first proving a special case: no matter how one triangulates a cyclic quadrilateral, the sum of inradii of triangles is constant.

After proving the quadrilateral case, the general case of the cyclic polygon theorem is an immediate corollary. The quadrilateral rule can be applied to quadrilateral components of a general partition of a cyclic polygon, and repeated application of the rule, die "flips" one diagonal, will generate all the possible partitions from any given partition, with each "flip" preserving the sum of the inradii.

The quadrilateral case follows from a simple extension of the Japanese theorem for cyclic quadrilaterals, which shows that a rectangle is formed by the two pairs of incenters corresponding to the two possible triangulations of the quadrilateral. The steps of this theorem require nothing beyond basic constructive Euclidean geometry.[2] With the additional construction of a parallelogram having sides parallel to the diagonals, and tangent to the corners of the rectangle of incenters, the quadrilateral case of the cyclic polygon theorem can be proved in a few steps. The equality of the sums of the radii of the two pairs is equivalent to the condition that the constructed parallelogram be a rhombus, and this is easily shown in the construction.

Another proof of the quadrilateral case is available due to Wilfred Reyes (2002).[3] In the proof, both the Japanese theorem for cyclic quadrilaterals and the quadrilateral case of the cyclic polygon theorem are proven as a consequence of Thébault's problem III.

See also Carnot's theorem, which is used in a proof of the theorem above Equal incircles theorem Tangent lines to circles Notes ^ Johnson, Roger A., Fortgeschrittene euklidische Geometrie, Dover Publ., 2007 (orig. 1929). ^ Fukagawa, Hidetoshi; Pedoe, D. (1989). Japanese Temple Geometry. Manitoba, Kanada: Charles Babbage Research Center. pp. 125–128. ISBN 0919611214. ^ Reyes, Wilfred (2002). "An Application of Thébault's Theorem" (Pdf). Geometrisches Forum. 2: 183–185. Abgerufen 2 September 2015. References Claudi Alsina, Roger B. Nelsen: Icons of Mathematics: An Exploration of Twenty Key Images. MAA, 2011, ISBN 9780883853528, pp. 121-125 Wilfred Reyes: An Application of Thebault’s Theorem. Geometrisches Forum, Volumen 2, 2002, pp. 183–185 External links Mangho Ahuja, Wataru Uegaki, Kayo Matsushita: In Search of the Japanese Theorem Japanese theorem at Mathworld Japanese Theorem interactive demonstration at the C.a.R. website Wataru Uegaki: "Japanese Theoremの起源と歴史" (On the Origin and History of the Japanese Theorem) http://hdl.handle.net/10076/4917 Categories: Euclidean plane geometryJapanese mathematicsTheorems about triangles and circles

Wenn Sie andere ähnliche Artikel wissen möchten Japanese theorem for cyclic polygons Sie können die Kategorie besuchen Euclidean plane geometry.

Hinterlasse eine Antwort

Deine Email-Adresse wird nicht veröffentlicht.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen