# Jacobi's four-square theorem

Jacobi's four-square theorem For other theorems of Jacobi see Jacobi's theorem (disambiguazione).

Jacobi's four-square theorem gives a formula for the number of ways that a given positive integer n can be represented as the sum of four squares.

Contenuti 1 Storia 2 Teorema 3 Prova 4 Guarda anche 5 Appunti 6 Riferimenti 7 External links History The theorem was proved in 1834 by Carl Gustav Jakob Jacobi.

Theorem Two representations are considered different if their terms are in different order or if the integer being squared (not just the square) is different; to illustrate, these are three of the eight different ways to represent 1: {stile di visualizzazione {inizio{allineato}&1^{2}+0^{2}+0^{2}+0^{2}\&0^{2}+1^{2}+0^{2}+0^{2}\&(-1)^{2}+0^{2}+0^{2}+0^{2}.fine{allineato}}} The number of ways to represent n as the sum of four squares is eight times the sum of the divisors of n if n is odd and 24 times the sum of the odd divisors of n if n is even (see divisor function), cioè.

{stile di visualizzazione r_{4}(n)={inizio{casi}8limiti di somma _{m|n}m&{testo{Se }}n{testo{ è strano}}\[12pt]24limiti di somma _{inizio{smallmatrix}m|n\m{testo{ odd}}fine{smallmatrix}}m&{testo{Se }}n{testo{ è anche}}.fine{casi}}} Equivalentemente, it is eight times the sum of all its divisors which are not divisible by 4, cioè.

{stile di visualizzazione r_{4}(n)=8sum _{mmid n,,4nmid m}m.} We may also write this as {stile di visualizzazione r_{4}(n)=8sigma (n)-32sigma (n/4) ,} where the second term is to be taken as zero if n is not divisible by 4. In particolare, for a prime number p we have the explicit formula r4(p) = 8(p + 1).[1] Some values of r4(n) occur infinitely often as r4(n) = r4(2mn) whenever n is even. The values of r4(n) can be arbitrarily large: infatti, r4(n) is infinitely often larger than 8√log n.[1] Proof The theorem can be proved by elementary means starting with the Jacobi triple product.[2] The proof shows that the Theta series for the lattice Z4 is a modular form of a certain level, and hence equals a linear combination of Eisenstein series.

See also Lagrange's four-square theorem Lambert series Sum of squares function Notes ^ Jump up to: a b Williams 2011, p. 119. ^ Hirschhorn, Michael D. (2000). "Partial Fractions and Four Classical Theorems of Number Theory". Il mensile matematico americano. 107 (3): 260–264. CiteSeerX 10.1.1.28.1615. doi:10.2307/2589321. JSTOR 2589321. References Hirschhorn, Michael D.; McGowan, James A. (2001). "Algebraic Consequences of Jacobi's Two— and Four—Square Theorems". In Garvan, F. G.; Ismail, M. e. H. (eds.). Symbolic Computation, Teoria dei numeri, Special Functions, Physics and Combinatorics. Developments in Mathematics. vol. 4. Springer. pp. 107–132. CiteSeerX 10.1.1.26.9028. doi:10.1007/978-1-4613-0257-5_7. ISBN 978-1-4020-0101-7. Hirschhorn, Michael D. (1987). "A simple proof of Jacobi's four-square theorem". Atti dell'American Mathematical Society. 101 (3): 436. doi:10.1090/s0002-9939-1987-0908644-9. Williams, Kenneth S. (2011). Number theory in the spirit of Liouville. Testi degli studenti della London Mathematical Society. vol. 76. Cambridge University Press. ISBN 978-0-521-17562-3. Zbl 1227.11002. Weissstein esterno sinistro, Eric W. "Sum of Squares Function". Math World. Categorie: Squares in number theoryTheorems in number theory

Se vuoi conoscere altri articoli simili a Jacobi's four-square theorem puoi visitare la categoria Squares in number theory.

Vai su

Utilizziamo cookie propri e di terze parti per migliorare l'esperienza dell'utente Maggiori informazioni