Intersection theorem

Intersection theorem This article is about projective geometry. For a result on tensor products of modules, see Homological conjectures in commutative algebra.

In projective geometry, an intersection theorem or incidence theorem is a statement concerning an incidence structure – consisting of points, lignes, and possibly higher-dimensional objects and their incidences – together with a pair of objects A and B (par exemple, a point and a line). La "théorème" stipule que, whenever a set of objects satisfies the incidences (c'est à dire. can be identified with the objects of the incidence structure in such a way that incidence is preserved), then the objects A and B must also be incident. An intersection theorem is not necessarily true in all projective geometries; it is a property that some geometries satisfy but others don't.

Par exemple, Desargues' theorem can be stated using the following incidence structure: Points: {style d'affichage {UN,B,C,un,b,c,P,Q,R,O}} Lines: {style d'affichage {UN B,CA,avant JC,un B,ac,avant JC,Aa,Sib,Cc,PQ}} Incidences (in addition to obvious ones such as {style d'affichage (UN,UN B)} ): {style d'affichage {(O,Aa),(O,Sib),(O,Cc),(P,avant JC),(P,avant JC),(Q,CA),(Q,ac),(R,UN B),(R,un B)}} The implication is then {style d'affichage (R,PQ)} —that point R is incident with line PQ.

Famous examples Desargues' theorem holds in a projective plane P if and only if P is the projective plane over some division ring (skewfield} D — {displaystyle P=mathbb {P} _{2}ré} . The projective plane is then called desarguesian. A theorem of Amitsur and Bergman states that, in the context of desarguesian projective planes, for every intersection theorem there is a rational identity such that the plane P satisfies the intersection theorem if and only if the division ring D satisfies the rational identity.

Pappus's hexagon theorem holds in a desarguesian projective plane {style d'affichage mathbb {P} _{2}ré} if and only if D is a field; it corresponds to the identity {displaystyle forall a,bin D,quad acdot b=bcdot a} . Fano's axiom (which states a certain intersection does not happen) holds in {style d'affichage mathbb {P} _{2}ré} if and only if D has characteristic {style d'affichage neq 2} ; it corresponds to the identity a + a = 0. References Rowen, Louis Halle, éd. (1980). Polynomial Identities in Ring Theory. Mathématiques pures et appliquées. Volume. 84. Presse académique. est ce que je:10.1016/s0079-8169(08)x6032-5. ISBN 9780125998505. Amitsur, S. UN. (1966). "Rational Identities and Applications to Algebra and Geometry". Journal d'algèbre. 3 (3): 304–359. est ce que je:10.1016/0021-8693(66)90004-4. Catégories: Incidence geometryTheorems in projective geometry

Si vous voulez connaître d'autres articles similaires à Intersection theorem vous pouvez visiter la catégorie Incidence geometry.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations