Intersecting secants theorem

Intersecting secants theorem {style d'affichage triangle PennsylvanieCsim triangle PBD} yields {displaystyle |PA|cdot |PD|=|PB|cdot |PC|} The intersecting secant theorem or just secant theorem describes the relation of line segments created by two intersecting secants and the associated circle.

For two lines AD and BC that intersect each other in P and some circle in A and D respective B and C the following equation holds: {style d'affichage |Pennsylvanie|cdot |PD|=|PB|cdot |PC|} The theorem follows directly from the fact, that the triangles PAC et PBD are similar. They share {style d'affichage angle DPC} and {displaystyle angle ADB=angle ACB} as they are inscribed angles over AB. The similarity yields an equation for ratios which is equivalent to the equation of the theorem given above: {displaystyle {frac {Pennsylvanie}{PC}}={frac {PB}{PD}}Leftrightarrow |Pennsylvanie|cdot |PD|=|PB|cdot |PC|} Next to the intersecting chords theorem and the tangent-secant theorem the intersecting secants theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle - the power of point theorem.

Références S. Gottwald: L'encyclopédie concise des mathématiques VNR. Springer, 2012, ISBN 9789401169820, pp. 175-176 Michael L. O'Leary: Révolutions en géométrie. Wiley, 2010, ISBN 9780470591796, p. 161 dictionnaire étudiant - Mathématiques I. Bibliographisches Institut & F.A. Brockhaus, 8. édition, Mannheim 2008, ISBN 978-3-411-04208-1, pp. 415-417 (Allemand) External links Secant Secant Theorem at proofwiki.org Power of a Point Theorem auf cut-the-knot.org Weisstein, Eric W. ">

Si vous voulez connaître d'autres articles similaires à Intersecting secants theorem vous pouvez visiter la catégorie Théorèmes sur les cercles.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations