Intersecting chords theorem

Intersecting chords theorem Intersecting chords theorem Type Theorem Field Euclidean geometry Statement The product of the lengths of the line segments on each chord are equal. Symbolic statement {displaystyle |AS|cdot |SC|=|BS|cdot |SD|} {displaystyle {begin{aligned}&|AS|cdot |SC|=|BS|cdot |SD|\=&(r+d)cdot (r-d)=r^{2}-d^{2}end{aligned}}} {displaystyle triangle ASDsim triangle BSC} The intersecting chords theorem or just the chord theorem is a statement in elementary geometry that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid's Elements.

More precisely, for two chords AC and BD intersecting in a point S the following equation holds: {displaystyle |AS|cdot |SC|=|BS|cdot |SD|} The converse is true as well, that is if for two line segments AC and BD intersecting in S the equation above holds true, then their four endpoints A, B, C and D lie on a common circle. Or in other words if the diagonals of a quadrilateral ABCD intersect in S and fulfill the equation above then it is a cyclic quadrilateral.

The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S, more precisely it can be stated that: {displaystyle |AS|cdot |SC|=|BS|cdot |SD|=r^{2}-d^{2}} where r is the radius of the circle, and d is the distance between the center of the circle and the intersection point S. This property follows directly from applying the chord theorem to a third chord going through S and the circle's center M (see drawing).

The theorem can be proven using similar triangles (via the inscribed-angle theorem). Consider the angles of the triangles ASD and BSC: {displaystyle {begin{aligned}angle ADS&=angle BCS,({text{inscribed angles over AB}})\angle DAS&=angle CBS,({text{inscribed angles over CD}})\angle ASD&=angle BSC,({text{opposing angles}})end{aligned}}} This means the triangles ASD and BSC are similar and therefore {displaystyle {frac {AS}{SD}}={frac {BS}{SC}}Leftrightarrow |AS|cdot |SC|=|BS|cdot |SD|} Next to the tangent-secant theorem and the intersecting secants theorem the intersecting chord theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle - the power of point theorem.

References Paul Glaister: Intersecting Chords Theorem: 30 Years on. Mathematics in School, Vol. 36, No. 1 (Jan., 2007), p. 22 (JSTOR) Bruce Shawyer: Explorations in Geometry. World scientific, 2010, ISBN 9789813100947, p. 14 Hans Schupp: Elementargeometrie. Schöningh, Paderborn 1977, ISBN 3-506-99189-2, p. 149 (German). Schülerduden - Mathematik I. Bibliographisches Institut & F.A. Brockhaus, 8. Auflage, Mannheim 2008, ISBN 978-3-411-04208-1, pp. 415-417 (German) External links Intersecting Chords Theorem at cut-the-knot.org Intersecting Chords Theorem at proofwiki.org Weisstein, Eric W. "Chord". MathWorld. Two interactive illustrations: [1] and [2] hide vte Ancient Greek and Hellenistic mathematics (Euclidean geometry) Mathematicians (timeline) AnaxagorasAnthemiusArchytasAristaeus the ElderAristarchusApolloniusArchimedesAutolycusBionBrysonCallippusCarpusChrysippusCleomedesCononCtesibiusDemocritusDicaearchusDioclesDiophantusDinostratusDionysodorusDomninusEratosthenesEudemusEuclidEudoxusEutociusGeminusHeliodorusHeronHipparchusHippasusHippiasHippocratesHypatiaHypsiclesIsidore of MiletusLeonMarinusMenaechmusMenelausMetrodorusNicomachusNicomedesNicotelesOenopidesPappusPerseusPhilolausPhilonPhilonidesPorphyryPosidoniusProclusPtolemyPythagorasSerenus SimpliciusSosigenesSporusThalesTheaetetusTheanoTheodorusTheodosiusTheon of AlexandriaTheon of SmyrnaThymaridasXenocratesZeno of EleaZeno of SidonZenodorus Treatises AlmagestArchimedes PalimpsestArithmeticaConics (Apollonius)CatoptricsData (Euclid)Elements (Euclid)Measurement of a CircleOn Conoids and SpheroidsOn the Sizes and Distances (Aristarchus)On Sizes and Distances (Hipparchus)On the Moving Sphere (Autolycus)Euclid's OpticsOn SpiralsOn the Sphere and CylinderOstomachionPlanisphaeriumSphaericsThe Quadrature of the ParabolaThe Sand Reckoner Problems Constructible numbers Angle trisectionDoubling the cubeSquaring the circleProblem of Apollonius Concepts and definitions Angle CentralInscribedChordCircles of Apollonius Apollonian circlesApollonian gasketCircumscribed circleCommensurabilityDiophantine equationDoctrine of proportionalityGolden ratioGreek numeralsIncircle and excircles of a triangleMethod of exhaustionParallel postulatePlatonic solidLune of HippocratesQuadratrix of HippiasRegular polygonStraightedge and compass constructionTriangle center Results In Elements Angle bisector theoremExterior angle theoremEuclidean algorithmEuclid's theoremGeometric mean theoremGreek geometric algebraHinge theoremInscribed angle theoremIntercept theoremIntersecting chords theoremIntersecting secants theoremLaw of cosinesPons asinorumPythagorean theoremTangent-secant theoremThales's theoremTheorem of the gnomon Apollonius Apollonius's theorem Other Aristarchus's inequalityCrossbar theoremHeron's formulaIrrational numbersLaw of sinesMenelaus's theoremPappus's area theoremProblem II.8 of ArithmeticaPtolemy's inequalityPtolemy's table of chordsPtolemy's theoremSpiral of Theodorus Centers CyreneLibrary of AlexandriaPlatonic Academy Other Ancient Greek astronomyGreek numeralsLatin translations of the 12th centuryNeusis construction  Ancient Greece portal •  Mathematics portal Categories: Theorems about circles

Si quieres conocer otros artículos parecidos a Intersecting chords theorem puedes visitar la categoría Theorems about circles.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.

Subir

Utilizamos cookies propias y de terceros para mejorar la experiencia de usuario Más información