Théorème d'identité

Identity theorem In real analysis and complex analysis, branches of mathematics, the identity theorem for analytic functions states: given functions f and g analytic on a domain D (open and connected subset of {style d'affichage mathbb {R} } ou {style d'affichage mathbb {C} } ), if f = g on some {displaystyle Ssubseteq D} , où {style d'affichage S} has an accumulation point, then f = g on D.

Thus an analytic function is completely determined by its values on a single open neighborhood in D, or even a countable subset of D (provided this contains a converging sequence). This is not true in general for real-differentiable functions, even infinitely real-differentiable functions. In comparison, analytic functions are a much more rigid notion. Informellement, one sometimes summarizes the theorem by saying analytic functions are "hard" (as opposed to, dire, continuous functions which are "soft").

The underpinning fact from which the theorem is established is the expandability of a holomorphic function into its Taylor series.

The connectedness assumption on the domain D is necessary. Par exemple, if D consists of two disjoint open sets, {style d'affichage f} peut être {style d'affichage 0} on one open set, et {style d'affichage 1} on another, tandis que {style d'affichage g} est {style d'affichage 0} on one, et {style d'affichage 2} on another.

Contenu 1 Lemme 2 Preuve 3 Full characterisation 3.1 Réclamation 3.2 Preuve 4 Voir également 5 References Lemma If two holomorphic functions {style d'affichage f} et {style d'affichage g} on a domain D agree on a set S which has an accumulation point {displaystyle c} dans {displaystyle D} , alors {displaystyle f=g} on a disk in {displaystyle D} centered at {displaystyle c} .

Pour prouver cela, it is enough to show that {style d'affichage f^{(n)}(c)=g^{(n)}(c)} pour tous {style d'affichage ngeq 0} .

If this is not the case, laisser {style d'affichage m} be the smallest nonnegative integer with {style d'affichage f^{(m)}(c)neq g^{(m)}(c)} . By holomorphy, we have the following Taylor series representation in some open neighborhood U of {displaystyle c} : {style d'affichage {commencer{aligné}(f-g)(z)&{}=(z-c)^{m}point gauche[{frac {(f-g)^{(m)}(c)}{m!}}+{frac {(z-c)cdot (f-g)^{(m+1)}(c)}{(m+1)!}}+cdots à droite]\[6pt]&{}=(z-c)^{m}cdot h(z).fin{aligné}}} By continuity, {style d'affichage h} is non-zero in some small open disk {style d'affichage B} autour de {displaystyle c} . But then {displaystyle f-gneq 0} on the punctured set {displaystyle B-{c}} . This contradicts the assumption that {displaystyle c} is an accumulation point of {style d'affichage {f=g}} .

This lemma shows that for a complex number {displaystyle ain mathbb {C} } , the fiber {style d'affichage f^{-1}(un)} is a discrete (and therefore countable) Positionner, unless {displaystyle fequiv a} .

Proof Define the set on which {style d'affichage f} et {style d'affichage g} have the same Taylor expansion: {displaystyle S=left{zin Dmid f^{(k)}(z)=g^{(k)}(z){texte{ pour tous }}kgeq 0right}=bigcap _{k=0}^{infime }la gauche{zin Dmid left(f ^{(k)}-g^{(k)}droit)(z)=0right}.} We'll show {style d'affichage S} is nonempty, open, and closed. Then by connectedness of {displaystyle D} , {style d'affichage S} must be all of {displaystyle D} , which implies {displaystyle f=g} sur {displaystyle S=D} .

Par le lemme, {displaystyle f=g} in a disk centered at {displaystyle c} dans {displaystyle D} , they have the same Taylor series at {displaystyle c} , alors {displaystyle cin S} , {style d'affichage S} is nonempty.

Comme {style d'affichage f} et {style d'affichage g} are holomorphic on {displaystyle D} , {displaystyle forall win S} , the Taylor series of {style d'affichage f} et {style d'affichage g} à {style d'affichage w} have non-zero radius of convergence. Par conséquent, the open disk {style d'affichage B_{r}(w)} also lies in {style d'affichage S} pour certains {style d'affichage r} . Alors {style d'affichage S} is open.

By holomorphy of {style d'affichage f} et {style d'affichage g} , they have holomorphic derivatives, so all {style d'affichage f^{(n)},g^{(n)}} are continuous. Cela signifie que {style d'affichage {zin Dmid (f ^{(k)}-g^{(k)})(z)=0}} is closed for all {style d'affichage k} . {style d'affichage S} is an intersection of closed sets, so it's closed.

Full characterisation Since the Identity Theorem is concerned with the equality of two holomorphic functions, we can simply consider the difference (which remains holomorphic) and can simply characterise when a holomorphic function is identically {style de texte 0} . The following result can be found in.[1] Claim Let {textstyle Gsubseteq mathbb {C} } denote a non-empty, connected open subset of the complex plane. Pour {style de texte h:Gto mathbb {C} } les suivants sont équivalents.

{textstyle hequiv 0} sur {textstyle G} ; the set {textstyle G_{0}={zin Gmid h(z)=0}} contains an accumulation point, {textstyle z_{0}} ; the set {textstyle G_{dernièrement }=bigcap _{nin mathbb {N} _{0}}G_{n}} is non-empty, où {textstyle G_{n}:={zin Gmid h^{(n)}(z)=0}} . Proof The directions (1 {textstyle Rightarrow } 2) et (1 {textstyle Rightarrow } 3) hold trivially.

Pour (3 {textstyle Rightarrow } 1), by connectedness of {textstyle G} it suffices to prove that the non-empty subset, {textstyle G_{dernièrement }subseteq G} , is clopen (since a topological space is connected if and only if it has no proper clopen subsets). Since holomorphic functions are infinitely differentiable, c'est à dire. {textstyle hin C^{infime }(g)} , it is clear that {textstyle G_{dernièrement }} is closed. To show openness, consider some {textstyle uin G_{dernièrement }} . Consider an open ball {textstyle Usubseteq G} contenant {textstyle u} , in which {style de texte h} has a convergent Taylor-series expansion centered on {textstyle u} . By virtue of {textstyle uin G_{dernièrement }} , all coefficients of this series are {style de texte 0} , whence {textstyle hequiv 0} sur {textstyle U} . It follows that all {textstyle n} -th derivatives of {style de texte h} sommes {style de texte 0} sur {textstyle U} , whence {textstyle Usubseteq G_{dernièrement }} . So each {textstyle uin G_{dernièrement }} lies in the interior of {textstyle G_{dernièrement }} .

Towards (2 {textstyle Rightarrow } 3), fix an accumulation point {textstyle z_{0}in G_{0}} . We now prove directly by induction that {textstyle z_{0}in G_{n}} pour chaque {textstyle nin mathbb {N} _{0}} . To this end let {textstyle rin (0,infime )} be strictly smaller than the convergence radius of the power series expansion of {style de texte h} autour de {textstyle z_{0}} , donné par {textstyle sum _{kin mathbb {N} _{0}}{frac {h ^{(k)}(z_{0})}{k!}}(z-z_{0})^{k}} . Fix now some {textstyle ngeq 0} and assume that {textstyle z_{0}in G_{k}} pour tous {textstyle k

Si vous voulez connaître d'autres articles similaires à Théorème d'identité vous pouvez visiter la catégorie Théorèmes en analyse complexe.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations