Hurwitz's theorem (number theory)

Hurwitz's theorem (number theory) This article is about a theorem in number theory. Pour d'autres usages, see Hurwitz's theorem.
In number theory, Hurwitz's theorem, named after Adolf Hurwitz, gives a bound on a Diophantine approximation. The theorem states that for every irrational number ξ there are infinitely many relatively prime integers m, n such that {style d'affichage à gauche|xii -{frac {m}{n}}droit|<{frac {1}{{sqrt {5}},n^{2}}}.} The condition that ξ is irrational cannot be omitted. Moreover the constant {displaystyle {sqrt {5}}} is the best possible; if we replace {displaystyle {sqrt {5}}} by any number {displaystyle A>{sqrt {5}}} and we let {displaystyle xi =(1+{sqrt {5}})/2} (the golden ratio) then there exist only finitely many relatively prime integers m, n such that the formula above holds.
The theorem is equivalent to the claim that the Markov constant of every number is larger than {style d'affichage {sqrt {5}}} .
References Hurwitz, UN. (1891). "Ueber die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche" [On the approximate representation of irrational numbers by rational fractions]. Annales mathématiques (en allemand). 39 (2): 279–284. est ce que je:10.1007/BF01206656. JFM 23.0222.02. S2CID 119535189. g. H. Hardy, Edward M. Wright, Roger Heath-Brown, Joseph Silverman, Andrew Wiles (2008). "Théorème 193". An introduction to the Theory of Numbers (6e éd.). Oxford science publications. p. 209. ISBN 978-0-19-921986-5. LeVeque, William Judson (1956). "Topics in number theory". Addison-Wesley Publishing Co., Inc., En lisant, Mass. M 0080682. Ivan Niven (2013). Diophantine Approximations. Courier Corporation. ISBN 978-0486462677. Catégories: Diophantine approximationTheorems in number theory
Si vous voulez connaître d'autres articles similaires à Hurwitz's theorem (number theory) vous pouvez visiter la catégorie Diophantine approximation.
Laisser un commentaire