Hurwitz's theorem (number theory)

Hurwitz's theorem (number theory) This article is about a theorem in number theory. Pour d'autres usages, see Hurwitz's theorem.

In number theory, Hurwitz's theorem, named after Adolf Hurwitz, gives a bound on a Diophantine approximation. The theorem states that for every irrational number ξ there are infinitely many relatively prime integers m, n such that {style d'affichage à gauche|xii -{frac {m}{n}}droit|<{frac {1}{{sqrt {5}},n^{2}}}.} The condition that ξ is irrational cannot be omitted. Moreover the constant {displaystyle {sqrt {5}}} is the best possible; if we replace {displaystyle {sqrt {5}}} by any number {displaystyle A>{sqrt {5}}} and we let {displaystyle xi =(1+{sqrt {5}})/2} (the golden ratio) then there exist only finitely many relatively prime integers m, n such that the formula above holds.

The theorem is equivalent to the claim that the Markov constant of every number is larger than {style d'affichage {sqrt {5}}} .

References Hurwitz, UN. (1891). "Ueber die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche" [On the approximate representation of irrational numbers by rational fractions]. Annales mathématiques (en allemand). 39 (2): 279–284. est ce que je:10.1007/BF01206656. JFM 23.0222.02. S2CID 119535189. g. H. Hardy, Edward M. Wright, Roger Heath-Brown, Joseph Silverman, Andrew Wiles (2008). "Théorème 193". An introduction to the Theory of Numbers (6e éd.). Oxford science publications. p. 209. ISBN 978-0-19-921986-5. LeVeque, William Judson (1956). "Topics in number theory". Addison-Wesley Publishing Co., Inc., En lisant, Mass. M 0080682. Ivan Niven (2013). Diophantine Approximations. Courier Corporation. ISBN 978-0486462677. Catégories: Diophantine approximationTheorems in number theory

Si vous voulez connaître d'autres articles similaires à Hurwitz's theorem (number theory) vous pouvez visiter la catégorie Diophantine approximation.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations