Hobby–Rice theorem In mathematics, and in particular the necklace splitting problem, the Hobby–Rice theorem is a result that is useful in establishing the existence of certain solutions. It was proved in 1965 by Charles R. Hobby and John R. Rice;[1] a simplified proof was given in 1976 par un. Pinkus.[2] The theorem Given an integer n, define a partition of the interval [0,1] as a sequence of numbers which divide the interval to {displaystyle n+1} subintervals: {displaystyle 0=z_{0}Define a signed partition as a partition in which each subinterval
{style d'affichage i}
has an associated sign {delta de style d'affichage _{je}} : {delta de style d'affichage _{1},pointsc ,delta _{k+1}
in left{+1,-1droit}}
The Hobby-Rice theorem says that for every n continuously integrable functions: {style d'affichage g_{1},pointsc ,g_{n}
colon [0,1]longrightarrow mathbb {R} }
there exists a signed partition of [0,1] tel que: {somme de style d'affichage _{je=1}^{n+1}delta _{je}!entier _{z_{i-1}}^{z_{je}}g_{j}(z),
dz=0{texte{ pour }}1
leq jleq n.} (autrement dit:
for each of the n functions,
its integral over the positive subintervals equals its integral over the negative subintervals).
Application to fair division The theorem was used by Noga Alon in the context of necklace splitting[3] dans 1987.
Suppose the interval [0,1]
is a cake.
There are n partners and each of the n functions is a value-density function of one partner.
We want to divide the cake into two parts such that all partners agree that the parts have the same value.
This fair-division challenge is sometimes referred to as the consensus-halving problem.[4]
The Hobby-Rice theorem implies that this can be done with n cuts.
References ^ Hobby, C. R;
Rice, J. R. (1965). "
A moment problem in L1 approximation". Actes de l'American Mathematical Society. Société mathématique américaine. 16 (4): 665
–670. est ce que je:10.2307/2033900. JSTOR 2033900.
^ Pinkus, Alain (1976). "
A simple proof of the Hobby-Rice theorem". Actes de l'American Mathematical Society. Société mathématique américaine. 60 (1): 82–84. est ce que je:10.2307/2041117. JSTOR 2041117.
^ Alon,
Noga (1987). "
Splitting Necklaces". Avancées en mathématiques. 63 (3): 247–253. est ce que je:10.1016/0001-8708(87)90055-7.
^ F.W.
Simmons and F.E. Elles sont (2003). "
Consensus-halving via theorems of Borsuk-Ulam and Tucker" (PDF). Sciences sociales mathématiques. 45: 15–25. est ce que je:10.1016/
S0165-4896(02)00087-2. Cet article lié à l'analyse mathématique est un bout. Vous pouvez aider Wikipédia en l'agrandissant. Catégories:
Theorems in measure theoryFair divisionCombinatorics on wordsTheorems in analysisMathematical analysis stubsSi vous voulez connaître d'autres articles similaires à Hobby–Rice theorem vous pouvez visiter la catégorie Combinatoire sur les mots.
Laisser un commentaire