Hobby–Rice theorem In mathematics, and in particular the necklace splitting problem, the Hobby–Rice theorem is a result that is useful in establishing the existence of certain solutions. It was proved in 1965 by Charles R. Hobby and John R. Rice;[1] a simplified proof was given in 1976 durch eine. Pinkus.[2] The theorem Given an integer n, define a partition of the interval [0,1] as a sequence of numbers which divide the interval to {displaystyle n+1} subintervals: {displaystyle 0=z_{0}Define a signed partition as a partition in which each subinterval
{Anzeigestil i}
has an associated sign {
displaystyle delta _{ich}} : {
displaystyle delta _{1},Punktec ,Delta _{k+1}
in left{+1,-1Rechts}}
The Hobby-Rice theorem says that for every n continuously integrable functions: {Anzeigestil g_{1},Punktec ,g_{n}
colon [0,1]longrightarrow mathbb {R} }
there exists a signed partition of [0,1] so dass: {Anzeigestil Summe _{i=1}^{n+1}Delta _{ich}!int _{z_{i-1}}^{z_{ich}}g_{j}(z),
dz=0{Text{ zum }}1
leq jleq n.} (mit anderen Worten:
for each of the n functions,
its integral over the positive subintervals equals its integral over the negative subintervals).
Application to fair division The theorem was used by Noga Alon in the context of necklace splitting[3] in 1987.
Suppose the interval [0,1]
is a cake.
There are n partners and each of the n functions is a value-density function of one partner.
We want to divide the cake into two parts such that all partners agree that the parts have the same value.
This fair-division challenge is sometimes referred to as the consensus-halving problem.[4]
The Hobby-Rice theorem implies that this can be done with n cuts.
References ^ Hobby, C. R.;
Rice, J. R. (1965). "
A moment problem in L1 approximation". Verfahren der American Mathematical Society. Amerikanische Mathematische Gesellschaft. 16 (4): 665
–670. doi:10.2307/2033900. JSTOR 2033900.
^ Pinkus, Allan (1976). "
A simple proof of the Hobby-Rice theorem". Verfahren der American Mathematical Society. Amerikanische Mathematische Gesellschaft. 60 (1): 82–84. doi:10.2307/2041117. JSTOR 2041117.
^ Alon,
Noga (1987). "
Splitting Necklaces". Fortschritte in der Mathematik. 63 (3): 247–253. doi:10.1016/0001-8708(87)90055-7.
^ F.W.
Simmons and F.E. Sie sind (2003). "
Consensus-halving via theorems of Borsuk-Ulam and Tucker" (Pdf). Mathematische Sozialwissenschaften. 45: 15–25. doi:10.1016/
S0165-4896(02)00087-2. Dieser Artikel zur mathematischen Analyse ist ein Stummel. Sie können Wikipedia helfen, indem Sie es erweitern. Kategorien:
Theorems in measure theoryFair divisionCombinatorics on wordsTheorems in analysisMathematical analysis stubsWenn Sie andere ähnliche Artikel wissen möchten Hobby–Rice theorem Sie können die Kategorie besuchen Wortkombinatorik.
Hinterlasse eine Antwort