Hobby–Rice theorem

Hobby–Rice theorem In mathematics, and in particular the necklace splitting problem, the Hobby–Rice theorem is a result that is useful in establishing the existence of certain solutions. It was proved in 1965 by Charles R. Hobby and John R. Rice;[1] a simplified proof was given in 1976 durch eine. Pinkus.[2] The theorem Given an integer n, define a partition of the interval [0,1] as a sequence of numbers which divide the interval to {displaystyle n+1} subintervals: {displaystyle 0=z_{0}Define a signed partition as a partition in which each subinterval {Anzeigestil i} has an associated sign {displaystyle delta _{ich}} : {displaystyle delta _{1},Punktec ,Delta _{k+1}in left{+1,-1Rechts}} The Hobby-Rice theorem says that for every n continuously integrable functions: {Anzeigestil g_{1},Punktec ,g_{n}colon [0,1]longrightarrow mathbb {R} } there exists a signed partition of [0,1] so dass: {Anzeigestil Summe _{i=1}^{n+1}Delta _{ich}!int _{z_{i-1}}^{z_{ich}}g_{j}(z),dz=0{Text{ zum }}1leq jleq n.} (mit anderen Worten: for each of the n functions, its integral over the positive subintervals equals its integral over the negative subintervals). Application to fair division The theorem was used by Noga Alon in the context of necklace splitting[3] in 1987. Suppose the interval [0,1] is a cake. There are n partners and each of the n functions is a value-density function of one partner. We want to divide the cake into two parts such that all partners agree that the parts have the same value. This fair-division challenge is sometimes referred to as the consensus-halving problem.[4] The Hobby-Rice theorem implies that this can be done with n cuts. References ^ Hobby, C. R.; Rice, J. R. (1965). "A moment problem in L1 approximation". Verfahren der American Mathematical Society. Amerikanische Mathematische Gesellschaft. 16 (4): 665–670. doi:10.2307/2033900. JSTOR 2033900. ^ Pinkus, Allan (1976). "A simple proof of the Hobby-Rice theorem". Verfahren der American Mathematical Society. Amerikanische Mathematische Gesellschaft. 60 (1): 82–84. doi:10.2307/2041117. JSTOR 2041117. ^ Alon, Noga (1987). "Splitting Necklaces". Fortschritte in der Mathematik. 63 (3): 247–253. doi:10.1016/0001-8708(87)90055-7. ^ F.W. Simmons and F.E. Sie sind (2003). "Consensus-halving via theorems of Borsuk-Ulam and Tucker" (Pdf). Mathematische Sozialwissenschaften. 45: 15–25. doi:10.1016/S0165-4896(02)00087-2. Dieser Artikel zur mathematischen Analyse ist ein Stummel. Sie können Wikipedia helfen, indem Sie es erweitern. Kategorien: Theorems in measure theoryFair divisionCombinatorics on wordsTheorems in analysisMathematical analysis stubs

Wenn Sie andere ähnliche Artikel wissen möchten Hobby–Rice theorem Sie können die Kategorie besuchen Wortkombinatorik.

Hinterlasse eine Antwort

Deine Email-Adresse wird nicht veröffentlicht.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen