Hirzebruch signature theorem

Hirzebruch signature theorem In differential topology, an area of mathematics, the Hirzebruch signature theorem[1] (sometimes called the Hirzebruch index theorem) is Friedrich Hirzebruch's 1954 result expressing the signature of a smooth closed oriented manifold by a linear combination of Pontryagin numbers called the L-genus. It was used in the proof of the Hirzebruch–Riemann–Roch theorem.
Contenu 1 Énoncé du théorème 2 Sketch of proof of the signature theorem 3 Généralisations 4 Références 5 Sources Statement of the theorem The L-genus is the genus for the multiplicative sequence of polynomials associated to the characteristic power series {style d'affichage {x over tanh(X)}=somme _{kgeq 0}{{2^{2k}B_{2k} plus de (2k)!}x^{2k}}=1+{x^{2} plus de 3}-{x^{4} plus de 45}+cdots .} The first two of the resulting L-polynomials are: {displaystyle L_{1}={tfrac {1}{3}}p_{1}} {displaystyle L_{2}={tfrac {1}{45}}(7p_{2}-p_{1}^{2})} By taking for the {style d'affichage p_{je}} the Pontryagin classes {style d'affichage p_{je}(M)} of the tangent bundle of a 4n dimensional smooth closed oriented manifold M one obtains the L-classes of M. Hirzebruch showed that the n-th L-class of M evaluated on the fundamental class of M, {style d'affichage [M]} , est égal à {style d'affichage sigma (M)} , the signature of M (c'est à dire. the signature of the intersection form on the 2nth cohomology group of M): {style d'affichage sigma (M)=langle L_{n}(p_{1}(M),des points ,p_{n}(M)),[M]hochet .} Sketch of proof of the signature theorem René Thom had earlier proved that the signature was given by some linear combination of Pontryagin numbers, and Hirzebruch found the exact formula for this linear combination by introducing the notion of the genus of a multiplicative sequence.
Since the rational oriented cobordism ring {style d'affichage Omega _{*}^{texte{SO}}otimes mathbb {Q} } est égal à {style d'affichage Omega _{*}^{texte{SO}}otimes mathbb {Q} =mathbb {Q} [mathbb {P} ^{2}(mathbb {C} ),mathbb {P} ^{4}(mathbb {C} ),ldots ],} the polynomial algebra generated by the oriented cobordism classes {style d'affichage [mathbb {P} ^{2je}(mathbb {C} )]} of the even dimensional complex projective spaces, it is enough to verify that {style d'affichage sigma (mathbb {P} ^{2je})=1=langle L_{je}(p_{1}(mathbb {P} ^{2je}),ldots ,p_{n}(mathbb {P} ^{2je})),[mathbb {P} ^{2je}]hochet } pour tout je.
Generalizations The signature theorem is a special case of the Atiyah–Singer index theorem for the signature operator. The analytic index of the signature operator equals the signature of the manifold, and its topological index is the L-genus of the manifold. By the Atiyah–Singer index theorem these are equal.
References ^ Hirzebruch, Frédéric (1995) [First published 1978]. Topological methods in algebraic geometry. Classiques en mathématiques. Translation from the German and appendix one by R. L. E. Schwarzenberger. Appendix two by A. Borel (Reprint of the 2nd, corr. print. of the 3rd ed.). Berlin: Springer Verlag. ISBN 3-540-58663-6. Sources F. Hirzebruch, The Signature Theorem. Reminiscences and recreation. Prospects in Mathematics, Annales d'études mathématiques, Band 70, 1971, S. 3–31. Milnor, John W.; Stasheff, Jacques D. (1974). Characteristic classes. Annales d'études mathématiques. Presse de l'Université de Princeton; University of Tokyo Press. ISBN 0-691-08122-0. Catégories: Theorems in algebraic topologyTheorems in differential topology
Si vous voulez connaître d'autres articles similaires à Hirzebruch signature theorem vous pouvez visiter la catégorie Théorèmes de topologie algébrique.
Laisser un commentaire