Hilbert's irreducibility theorem

Hilbert's irreducibility theorem This article includes a list of general references, mas faltam citações em linha correspondentes suficientes. Ajude a melhorar este artigo introduzindo citações mais precisas. (Marchar 2012) (Saiba como e quando remover esta mensagem de modelo) In number theory, Hilbert's irreducibility theorem, conceived by David Hilbert in 1892, states that every finite set of irreducible polynomials in a finite number of variables and having rational number coefficients admit a common specialization of a proper subset of the variables to rational numbers such that all the polynomials remain irreducible. This theorem is a prominent theorem in number theory.

Conteúdo 1 Formulation of the theorem 2 Formulários 3 Generalizações 4 References Formulation of the theorem Hilbert's irreducibility theorem. Deixar {estilo de exibição f_{1}(X_{1},ldots ,X_{r},Y_{1},ldots ,Y_{s}),ldots ,f_{n}(X_{1},ldots ,X_{r},Y_{1},ldots ,Y_{s})} be irreducible polynomials in the ring {estilo de exibição mathbb {Q} (X_{1},ldots ,X_{r})[Y_{1},ldots ,Y_{s}].} Then there exists an r-tuple of rational numbers (a1, ..., ar) de tal modo que {estilo de exibição f_{1}(uma_{1},ldots ,uma_{r},Y_{1},ldots ,Y_{s}),ldots ,f_{n}(uma_{1},ldots ,uma_{r},Y_{1},ldots ,Y_{s})} are irreducible in the ring {estilo de exibição mathbb {Q} [Y_{1},ldots ,Y_{s}].} Observações.

It follows from the theorem that there are infinitely many r-tuples. In fact the set of all irreducible specializations, called Hilbert set, is large in many senses. Por exemplo, this set is Zariski dense in {estilo de exibição mathbb {Q} ^{r}.} There are always (infinitely many) integer specializations, ou seja, the assertion of the theorem holds even if we demand (a1, ..., ar) to be integers. There are many Hilbertian fields, ou seja, fields satisfying Hilbert's irreducibility theorem. Por exemplo, number fields are Hilbertian.[1] The irreducible specialization property stated in the theorem is the most general. There are many reductions, por exemplo., it suffices to take {displaystyle n=r=s=1} in the definition. A result of Bary-Soroker shows that for a field K to be Hilbertian it suffices to consider the case of {displaystyle n=r=s=1} e {displaystyle f=f_{1}} absolutely irreducible, isso é, irreducible in the ring Kalg[X,S], where Kalg is the algebraic closure of K. Applications Hilbert's irreducibility theorem has numerous applications in number theory and algebra. Por exemplo: The inverse Galois problem, Hilbert's original motivation. The theorem almost immediately implies that if a finite group G can be realized as the Galois group of a Galois extension N of {displaystyle E=mathbb {Q} (X_{1},ldots ,X_{r}),} then it can be specialized to a Galois extension N0 of the rational numbers with G as its Galois group.[2] (Para ver isso, choose a monic irreducible polynomial f(X1, ..., Xn, S) whose root generates N over E. If f(a1, ..., um, S) is irreducible for some ai, then a root of it will generate the asserted N0.) Construction of elliptic curves with large rank.[2] Hilbert's irreducibility theorem is used as a step in the Andrew Wiles proof of Fermat's Last Theorem. If a polynomial {estilo de exibição g(x)em matemática {Z} [x]} is a perfect square for all large integer values of x, then g(x) is the square of a polynomial in {estilo de exibição mathbb {Z} [x].} This follows from Hilbert's irreducibility theorem with {displaystyle n=r=s=1} e {estilo de exibição f_{1}(X,S)=Y^{2}-g(X).} (More elementary proofs exist.) The same result is true when "square" is replaced by "cube", "fourth power", etc. Generalizations It has been reformulated and generalized extensively, by using the language of algebraic geometry. See thin set (Apertado).

References D. Hilbert, "Uber die Irreducibilitat ganzer rationaler Functionen mit ganzzahligen Coefficienten", J. reine angew. Matemática. 110 (1892) 104-129. ^ Idioma (1997) p.41 ^ Jump up to: a b Lang (1997) p.42 Lang, Sarja (1997). Survey of Diophantine Geometry. Springer-Verlag. ISBN 3-540-61223-8. Zbl 0869.11051. J. P. Apertado, Lectures on The Mordell-Weil Theorem, Vieweg, 1989. M. D. Fried and M. Jarden, Field Arithmetic, Springer-Verlag, Berlim, 2005. H. Völklein, Groups as Galois Groups, Cambridge University Press, 1996. G. Malle and B. H. Matzat, Inverse Galois Theory, Springer, 1999. Categorias: Theorems in number theoryTheorems about polynomialsDavid Hilbert

Se você quiser conhecer outros artigos semelhantes a Hilbert's irreducibility theorem você pode visitar a categoria David Hilbert.

Deixe uma resposta

seu endereço de e-mail não será publicado.

Ir para cima

Usamos cookies próprios e de terceiros para melhorar a experiência do usuário Mais informação