# Hilbert's irreducibility theorem

Hilbert's irreducibility theorem This article includes a list of general references, ma manca di citazioni inline corrispondenti sufficienti. Aiutaci a migliorare questo articolo introducendo citazioni più precise. (Marzo 2012) (Scopri come e quando rimuovere questo messaggio modello) In number theory, Hilbert's irreducibility theorem, conceived by David Hilbert in 1892, states that every finite set of irreducible polynomials in a finite number of variables and having rational number coefficients admit a common specialization of a proper subset of the variables to rational numbers such that all the polynomials remain irreducible. This theorem is a prominent theorem in number theory.

Contenuti 1 Formulation of the theorem 2 Applicazioni 3 generalizzazioni 4 References Formulation of the theorem Hilbert's irreducibility theorem. Permettere {stile di visualizzazione f_{1}(X_{1},ldot ,X_{r},Y_{1},ldot ,Y_{S}),ldot ,f_{n}(X_{1},ldot ,X_{r},Y_{1},ldot ,Y_{S})} be irreducible polynomials in the ring {displaystyle mathbb {Q} (X_{1},ldot ,X_{r})[Y_{1},ldot ,Y_{S}].} Then there exists an r-tuple of rational numbers (a1, ..., ar) tale che {stile di visualizzazione f_{1}(un_{1},ldot ,un_{r},Y_{1},ldot ,Y_{S}),ldot ,f_{n}(un_{1},ldot ,un_{r},Y_{1},ldot ,Y_{S})} are irreducible in the ring {displaystyle mathbb {Q} [Y_{1},ldot ,Y_{S}].} Osservazioni.

It follows from the theorem that there are infinitely many r-tuples. In fact the set of all irreducible specializations, called Hilbert set, is large in many senses. Per esempio, this set is Zariski dense in {displaystyle mathbb {Q} ^{r}.} There are always (infinitely many) integer specializations, cioè., the assertion of the theorem holds even if we demand (a1, ..., ar) to be integers. There are many Hilbertian fields, cioè., fields satisfying Hilbert's irreducibility theorem. Per esempio, number fields are Hilbertian.[1] The irreducible specialization property stated in the theorem is the most general. There are many reductions, per esempio., it suffices to take {displaystyle n=r=s=1} in the definition. A result of Bary-Soroker shows that for a field K to be Hilbertian it suffices to consider the case of {displaystyle n=r=s=1} e {displaystyle f=f_{1}} absolutely irreducible, questo è, irreducible in the ring Kalg[X,Y], where Kalg is the algebraic closure of K. Applications Hilbert's irreducibility theorem has numerous applications in number theory and algebra. Per esempio: The inverse Galois problem, Hilbert's original motivation. The theorem almost immediately implies that if a finite group G can be realized as the Galois group of a Galois extension N of {displaystyle E=mathbb {Q} (X_{1},ldot ,X_{r}),} then it can be specialized to a Galois extension N0 of the rational numbers with G as its Galois group.[2] (Per vedere questo, choose a monic irreducible polynomial f(X1, ..., Xn, Y) whose root generates N over E. If f(a1, ..., un, Y) is irreducible for some ai, then a root of it will generate the asserted N0.) Construction of elliptic curves with large rank.[2] Hilbert's irreducibility theorem is used as a step in the Andrew Wiles proof of Fermat's Last Theorem. If a polynomial {stile di visualizzazione g(X)in matematica bb {Z} [X]} is a perfect square for all large integer values of x, then g(X) is the square of a polynomial in {displaystyle mathbb {Z} [X].} This follows from Hilbert's irreducibility theorem with {displaystyle n=r=s=1} e {stile di visualizzazione f_{1}(X,Y)=Y^{2}-g(X).} (More elementary proofs exist.) The same result is true when "square" is replaced by "cube", "fourth power", eccetera. Generalizations It has been reformulated and generalized extensively, by using the language of algebraic geometry. See thin set (Stretto).

References D. Hilbert, "Uber die Irreducibilitat ganzer rationaler Functionen mit ganzzahligen Coefficienten", J. reine angew. Matematica. 110 (1892) 104–129. ^ Lang (1997) p.41 ^ Jump up to: a b Lang (1997) p.42 Lang, Serge (1997). Survey of Diophantine Geometry. Springer-Verlag. ISBN 3-540-61223-8. Zbl 0869.11051. J. P. Stretto, Lectures on The Mordell-Weil Theorem, Vieweg, 1989. M. D. Fried and M. Jarden, Field Arithmetic, Springer-Verlag, Berlino, 2005. H. Völklein, Groups as Galois Groups, Cambridge University Press, 1996. G. Malle and B. H. Matzat, Inverse Galois Theory, Springer, 1999. Categorie: Theorems in number theoryTheorems about polynomialsDavid Hilbert

Se vuoi conoscere altri articoli simili a Hilbert's irreducibility theorem puoi visitare la categoria David Hilbert.

Vai su

Utilizziamo cookie propri e di terze parti per migliorare l'esperienza dell'utente Maggiori informazioni