# Hilbert's irreducibility theorem

Hilbert's irreducibility theorem This article includes a list of general references, mais il manque suffisamment de citations en ligne correspondantes. Merci d'aider à améliorer cet article en introduisant des citations plus précises. (Mars 2012) (Découvrez comment et quand supprimer ce modèle de message) In number theory, Hilbert's irreducibility theorem, conceived by David Hilbert in 1892, states that every finite set of irreducible polynomials in a finite number of variables and having rational number coefficients admit a common specialization of a proper subset of the variables to rational numbers such that all the polynomials remain irreducible. This theorem is a prominent theorem in number theory.

Contenu 1 Formulation of the theorem 2 Applications 3 Généralisations 4 References Formulation of the theorem Hilbert's irreducibility theorem. Laisser {style d'affichage f_{1}(X_{1},ldots ,X_{r},O_{1},ldots ,O_{s}),ldots ,F_{n}(X_{1},ldots ,X_{r},O_{1},ldots ,O_{s})} be irreducible polynomials in the ring {style d'affichage mathbb {Q} (X_{1},ldots ,X_{r})[O_{1},ldots ,O_{s}].} Then there exists an r-tuple of rational numbers (a1, ..., ar) tel que {style d'affichage f_{1}(un_{1},ldots ,un_{r},O_{1},ldots ,O_{s}),ldots ,F_{n}(un_{1},ldots ,un_{r},O_{1},ldots ,O_{s})} are irreducible in the ring {style d'affichage mathbb {Q} [O_{1},ldots ,O_{s}].} Remarques.

It follows from the theorem that there are infinitely many r-tuples. In fact the set of all irreducible specializations, called Hilbert set, is large in many senses. Par exemple, this set is Zariski dense in {style d'affichage mathbb {Q} ^{r}.} There are always (infinitely many) integer specializations, c'est à dire., the assertion of the theorem holds even if we demand (a1, ..., ar) to be integers. There are many Hilbertian fields, c'est à dire., fields satisfying Hilbert's irreducibility theorem. Par exemple, number fields are Hilbertian.[1] The irreducible specialization property stated in the theorem is the most general. There are many reductions, par exemple., it suffices to take {displaystyle n=r=s=1} in the definition. A result of Bary-Soroker shows that for a field K to be Hilbertian it suffices to consider the case of {displaystyle n=r=s=1} et {displaystyle f=f_{1}} absolutely irreducible, C'est, irreducible in the ring Kalg[X,Oui], where Kalg is the algebraic closure of K. Applications Hilbert's irreducibility theorem has numerous applications in number theory and algebra. Par exemple: The inverse Galois problem, Hilbert's original motivation. The theorem almost immediately implies that if a finite group G can be realized as the Galois group of a Galois extension N of {displaystyle E=mathbb {Q} (X_{1},ldots ,X_{r}),} then it can be specialized to a Galois extension N0 of the rational numbers with G as its Galois group.[2] (Pour voir ça, choose a monic irreducible polynomial f(X1, ..., Xn, Oui) whose root generates N over E. If f(a1, ..., un, Oui) is irreducible for some ai, then a root of it will generate the asserted N0.) Construction of elliptic curves with large rank.[2] Hilbert's irreducibility theorem is used as a step in the Andrew Wiles proof of Fermat's Last Theorem. If a polynomial {style d'affichage g(X)en mathbb {Z} [X]} is a perfect square for all large integer values of x, then g(X) is the square of a polynomial in {style d'affichage mathbb {Z} [X].} This follows from Hilbert's irreducibility theorem with {displaystyle n=r=s=1} et {style d'affichage f_{1}(X,Oui)=Y^{2}-g(X).} (More elementary proofs exist.) The same result is true when "square" is replaced by "cube", "fourth power", etc. Generalizations It has been reformulated and generalized extensively, by using the language of algebraic geometry. See thin set (Serre).

References D. Hilbert, "Uber die Irreducibilitat ganzer rationaler Functionen mit ganzzahligen Coefficienten", J. reine angew. Math. 110 (1892) 104–129. ^ Lang (1997) p.41 ^ Jump up to: a b Lang (1997) p.42 Lang, Serge (1997). Survey of Diophantine Geometry. Springer Verlag. ISBN 3-540-61223-8. Zbl 0869.11051. J. P. Serre, Lectures on The Mordell-Weil Theorem, Vieweg, 1989. M. ré. Fried and M. Jarden, Field Arithmetic, Springer Verlag, Berlin, 2005. H. Völklein, Groups as Galois Groups, la presse de l'Universite de Cambridge, 1996. g. Malle and B. H. Matzat, Inverse Galois Theory, Springer, 1999. Catégories: Theorems in number theoryTheorems about polynomialsDavid Hilbert

Si vous voulez connaître d'autres articles similaires à Hilbert's irreducibility theorem vous pouvez visiter la catégorie David Hilbert.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations