Hilbert's irreducibility theorem

Hilbert's irreducibility theorem This article includes a list of general references, aber es fehlen genügend entsprechende Inline-Zitate. Bitte helfen Sie mit, diesen Artikel zu verbessern, indem Sie genauere Zitate einfügen. (Marsch 2012) (Erfahren Sie, wie und wann Sie diese Vorlagennachricht entfernen können) In number theory, Hilbert's irreducibility theorem, conceived by David Hilbert in 1892, states that every finite set of irreducible polynomials in a finite number of variables and having rational number coefficients admit a common specialization of a proper subset of the variables to rational numbers such that all the polynomials remain irreducible. This theorem is a prominent theorem in number theory.

Inhalt 1 Formulation of the theorem 2 Anwendungen 3 Verallgemeinerungen 4 References Formulation of the theorem Hilbert's irreducibility theorem. Lassen {Anzeigestil f_{1}(X_{1},Punkte ,X_{r},Y_{1},Punkte ,Y_{s}),Punkte ,f_{n}(X_{1},Punkte ,X_{r},Y_{1},Punkte ,Y_{s})} be irreducible polynomials in the ring {Anzeigestil mathbb {Q} (X_{1},Punkte ,X_{r})[Y_{1},Punkte ,Y_{s}].} Then there exists an r-tuple of rational numbers (a1, ..., ar) so dass {Anzeigestil f_{1}(a_{1},Punkte ,a_{r},Y_{1},Punkte ,Y_{s}),Punkte ,f_{n}(a_{1},Punkte ,a_{r},Y_{1},Punkte ,Y_{s})} are irreducible in the ring {Anzeigestil mathbb {Q} [Y_{1},Punkte ,Y_{s}].} Bemerkungen.

It follows from the theorem that there are infinitely many r-tuples. In fact the set of all irreducible specializations, called Hilbert set, is large in many senses. Zum Beispiel, this set is Zariski dense in {Anzeigestil mathbb {Q} ^{r}.} There are always (infinitely many) integer specializations, d.h., the assertion of the theorem holds even if we demand (a1, ..., ar) to be integers. There are many Hilbertian fields, d.h., fields satisfying Hilbert's irreducibility theorem. Zum Beispiel, number fields are Hilbertian.[1] The irreducible specialization property stated in the theorem is the most general. There are many reductions, z.B., es reicht zu nehmen {displaystyle n=r=s=1} in the definition. A result of Bary-Soroker shows that for a field K to be Hilbertian it suffices to consider the case of {displaystyle n=r=s=1} und {displaystyle f=f_{1}} absolutely irreducible, das ist, irreducible in the ring Kalg[X,Y], where Kalg is the algebraic closure of K. Applications Hilbert's irreducibility theorem has numerous applications in number theory and algebra. Zum Beispiel: The inverse Galois problem, Hilbert's original motivation. The theorem almost immediately implies that if a finite group G can be realized as the Galois group of a Galois extension N of {displaystyle E=mathbb {Q} (X_{1},Punkte ,X_{r}),} then it can be specialized to a Galois extension N0 of the rational numbers with G as its Galois group.[2] (Um das zu sehen, choose a monic irreducible polynomial f(X1, ..., Xn, Y) whose root generates N over E. If f(a1, ..., ein, Y) is irreducible for some ai, then a root of it will generate the asserted N0.) Construction of elliptic curves with large rank.[2] Hilbert's irreducibility theorem is used as a step in the Andrew Wiles proof of Fermat's Last Theorem. If a polynomial {Anzeigestil g(x)in mathbb {Z} [x]} is a perfect square for all large integer values of x, then g(x) is the square of a polynomial in {Anzeigestil mathbb {Z} [x].} This follows from Hilbert's irreducibility theorem with {displaystyle n=r=s=1} und {Anzeigestil f_{1}(X,Y)=Y^{2}-g(X).} (More elementary proofs exist.) The same result is true when "square" is replaced by "cube", "fourth power", etc. Generalizations It has been reformulated and generalized extensively, by using the language of algebraic geometry. See thin set (Fest).

References D. Hilbert, "Uber die Irreducibilitat ganzer rationaler Functionen mit ganzzahligen Coefficienten", J. reine angew. Mathematik. 110 (1892) 104–129. ^ Lang (1997) p.41 ^ Jump up to: a b Lang (1997) p.42 Lang, Serge (1997). Survey of Diophantine Geometry. Springer-Verlag. ISBN 3-540-61223-8. Zbl 0869.11051. J. P. Fest, Lectures on The Mordell-Weil Theorem, Vieweg, 1989. M. D. Fried and M. Jarden, Field Arithmetic, Springer-Verlag, Berlin, 2005. H. Völklein, Groups as Galois Groups, Cambridge University Press, 1996. G. Malle and B. H. Matzat, Inverse Galois Theory, Springer, 1999. Kategorien: Theorems in number theoryTheorems about polynomialsDavid Hilbert

Wenn Sie andere ähnliche Artikel wissen möchten Hilbert's irreducibility theorem Sie können die Kategorie besuchen David Hilbert.

Hinterlasse eine Antwort

Deine Email-Adresse wird nicht veröffentlicht.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen