Hilbert's basis theorem

Hilbert's basis theorem In mathematics, specifically commutative algebra, Hilbert's basis theorem says that a polynomial ring over a Noetherian ring is Noetherian.

Contenu 1 Déclaration 2 Preuve 2.1 First Proof 2.2 Second Proof 3 Applications 4 Formal proofs 5 Références 6 Further reading Statement If {style d'affichage R} is a ring, laisser {style d'affichage R[X]} denote the ring of polynomials in the indeterminate {style d'affichage X} plus de {style d'affichage R} . Hilbert proved that if {style d'affichage R} est "not too large", in the sense that if {style d'affichage R} is Noetherian, the same must be true for {style d'affichage R[X]} . Officiellement, Hilbert's Basis Theorem. Si {style d'affichage R} is a Noetherian ring, alors {style d'affichage R[X]} is a Noetherian ring.

Corollaire. Si {style d'affichage R} is a Noetherian ring, alors {style d'affichage R[X_{1},pointsc ,X_{n}]} is a Noetherian ring.

This can be translated into algebraic geometry as follows: every algebraic set over a field can be described as the set of common roots of finitely many polynomial equations. Hilbert proved the theorem (for the special case of polynomial rings over a field) in the course of his proof of finite generation of rings of invariants.[1] Hilbert produced an innovative proof by contradiction using mathematical induction; his method does not give an algorithm to produce the finitely many basis polynomials for a given ideal: it only shows that they must exist. One can determine basis polynomials using the method of Gröbner bases.

Proof Theorem. Si {style d'affichage R} is a left (resp. droit) Noetherian ring, then the polynomial ring {style d'affichage R[X]} is also a left (resp. droit) Noetherian ring.

Remarque. We will give two proofs, in both only the "la gauche" case is considered; the proof for the right case is similar. First Proof Suppose {style d'affichage {mathfrak {un}}subseteq R[X]} is a non-finitely generated left ideal. Then by recursion (using the axiom of dependent choice) there is a sequence of polynomials {style d'affichage {F_{0},F_{1},ldots }} telle que si {style d'affichage {mathfrak {b}}_{n}} is the left ideal generated by {style d'affichage f_{0},ldots ,F_{n-1}} alors {style d'affichage f_{n}dans {mathfrak {un}}setmoins {mathfrak {b}}_{n}} is of minimal degree. Il est clair que {style d'affichage {degré(F_{0}),degré(F_{1}),ldots }} is a non-decreasing sequence of natural numbers. Laisser {style d'affichage a_{n}} be the leading coefficient of {style d'affichage f_{n}} et laissez {style d'affichage {mathfrak {b}}} be the left ideal in {style d'affichage R} generated by {style d'affichage a_{0},un_{1},ldots } . Depuis {style d'affichage R} is Noetherian the chain of ideals {style d'affichage (un_{0})subset (un_{0},un_{1})subset (un_{0},un_{1},un_{2})subset cdots } must terminate. Ainsi {style d'affichage {mathfrak {b}}=(un_{0},ldots ,un_{N-1})} for some integer {displaystyle N} . So in particular, {style d'affichage a_{N}=somme _{jeand claim also {style d'affichage {mathfrak {un}}sous-ensemble {mathfrak {un}}^{*}} . Suppose for the sake of contradiction this is not so. Then let {displaystyle hin {mathfrak {un}}setmoins {mathfrak {un}}^{*}} be of minimal degree, and denote its leading coefficient by {style d'affichage a} . Cas 1: {displaystyle deg(h)geek d} . Regardless of this condition, Nous avons {displaystyle ain {mathfrak {b}}} , so is a left linear combination {displaystyle a=sum _{j}tu_{j}un_{j}} of the coefficients of the {style d'affichage f_{j}} . Envisager {style d'affichage h_{0}triangleq sum _{j}tu_{j}X^{degré(h)-degré(F_{j})}F_{j},} which has the same leading term as {style d'affichage h} ; moreover {style d'affichage h_{0}dans {mathfrak {un}}^{*}} tandis que {displaystyle hnotin {mathfrak {un}}^{*}} . Par conséquent {displaystyle h-h_{0}dans {mathfrak {un}}setmoins {mathfrak {un}}^{*}} et {displaystyle deg(h-h_{0})

Si vous voulez connaître d'autres articles similaires à Hilbert's basis theorem vous pouvez visiter la catégorie Commutative algebra.

Laisser un commentaire

Votre adresse email ne sera pas publiée.

Monter

Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations