Higman's embedding theorem

Higman's embedding theorem Not to be confused with Universal embedding theorem.

In group theory, Higman's embedding theorem states that every finitely generated recursively presented group R can be embedded as a subgroup of some finitely presented group G. This is a result of Graham Higman from the 1960s.[1] Auf der anderen Seite, it is an easy theorem that every finitely generated subgroup of a finitely presented group is recursively presented, so the recursively presented finitely generated groups are (bis auf Isomorphie) exactly the finitely generated subgroups of finitely presented groups.

Since every countable group is a subgroup of a finitely generated group, the theorem can be restated for those groups.

As a corollary, there is a universal finitely presented group that contains all finitely presented groups as subgroups (bis auf Isomorphie); tatsächlich, its finitely generated subgroups are exactly the finitely generated recursively presented groups (wieder, bis auf Isomorphie).

Higman's embedding theorem also implies the Novikov-Boone theorem (originally proved in the 1950s by other methods) about the existence of a finitely presented group with algorithmically undecidable word problem. In der Tat, it is fairly easy to construct a finitely generated recursively presented group with undecidable word problem. Then any finitely presented group that contains this group as a subgroup will have undecidable word problem as well.

The usual proof of the theorem uses a sequence of HNN extensions starting with R and ending with a group G which can be shown to have a finite presentation.[2] References ^ Graham Higman, Subgroups of finitely presented groups. Proceedings of the Royal Society. Serie A. Mathematical and Physical Sciences. vol. 262 (1961), pp. 455-475. ^ Roger C. Lyndon and Paul E. Schupp. Combinatorial Group Theory. Springer-Verlag, New York, 2001. "Klassiker der Mathematik" series, Nachdruck der 1977 edition. ISBN 978-3-540-41158-1 Kategorien: Infinite group theoryTheorems in group theory

Wenn Sie andere ähnliche Artikel wissen möchten Higman's embedding theorem Sie können die Kategorie besuchen Infinite group theory.

Hinterlasse eine Antwort

Deine Email-Adresse wird nicht veröffentlicht.

Geh hinauf

Wir verwenden eigene Cookies und Cookies von Drittanbietern, um die Benutzererfahrung zu verbessern Mehr Informationen