Hasse–Arf theorem

Hasse–Arf theorem In mathematics, specifically in local class field theory, the Hasse–Arf theorem is a result concerning jumps of the upper numbering filtration of the Galois group of a finite Galois extension. A special case of it when the residue fields are finite was originally proved by Helmut Hasse,[1][2] and the general result was proved by Cahit Arf.[3][4] Contenuti 1 Dichiarazione 1.1 Higher ramification groups 1.2 Enunciato del teorema 2 Esempio 3 Non-abelian extensions 4 Appunti 5 References Statement Higher ramification groups Main article: Ramification group The theorem deals with the upper numbered higher ramification groups of a finite abelian extension L/K. So assume L/K is a finite Galois extension, and that vK is a discrete normalised valuation of K, whose residue field has characteristic p > 0, and which admits a unique extension to L, say w. Denote by vL the associated normalised valuation ew of L and let {displaystyle scriptstyle {matematico {o}}} be the valuation ring of L under vL. Let L/K have Galois group G and define the s-th ramification group of L/K for any real s ≥ −1 by {stile di visualizzazione G_{S}(L/K)={sigma in G,:,v_{l}(sigma a-a)geq s+1{testo{ per tutti }}ain {matematico {o}}}.} Così, Per esempio, G−1 is the Galois group G. To pass to the upper numbering one has to define the function ψL/K which in turn is the inverse of the function ηL/K defined by {displaystyle eta _{L/K}(S)=int _{0}^{S}{frac {dx}{|G_{0}:G_{X}|}}.} The upper numbering of the ramification groups is then defined by Gt(L/K) = Gs(L/K) where s = ψL/K(t).

These higher ramification groups Gt(L/K) are defined for any real t ≥ −1, but since vL is a discrete valuation, the groups will change in discrete jumps and not continuously. Thus we say that t is a jump of the filtration {Gt(L/K) : t ≥ −1} if Gt(L/K) ≠ Gu(L/K) for any u > t. The Hasse–Arf theorem tells us the arithmetic nature of these jumps.

Statement of the theorem With the above set up, the theorem states that the jumps of the filtration {Gt(L/K) : t ≥ −1} are all rational integers.[4][5] Example Suppose G is cyclic of order {stile di visualizzazione p^{n}} , {stile di visualizzazione p} residue characteristic and {stile di visualizzazione G(io)} be the subgroup of {stile di visualizzazione G} di ordine {stile di visualizzazione p^{n-io}} . The theorem says that there exist positive integers {displaystyle i_{0},io_{1},...,io_{n-1}} tale che {stile di visualizzazione G_{0}=cdots =G_{io_{0}}=G=G^{0}=cdots =G^{io_{0}}} {stile di visualizzazione G_{io_{0}+1}=cdots =G_{io_{0}+pi_{1}}=G(1)=G^{io_{0}+1}=cdots =G^{io_{0}+io_{1}}} {stile di visualizzazione G_{io_{0}+pi_{1}+1}=cdots =G_{io_{0}+pi_{1}+p^{2}io_{2}}=G(2)=G^{io_{0}+io_{1}+1}} ... {stile di visualizzazione G_{io_{0}+pi_{1}+cdots +p^{n-1}io_{n-1}+1}=1=G^{io_{0}+cdots +i_{n-1}+1}.} [4] Non-abelian extensions For non-abelian extensions the jumps in the upper filtration need not be at integers. Serre gave an example of a totally ramified extension with Galois group the quaternion group Q8 of order 8 with G0 = Q8 G1 = Q8 G2 = Z/2Z G3 = Z/2Z G4 = 1 The upper numbering then satisfies Gn = Q8 for n≤1 Gn = Z/2Z for 1

Se vuoi conoscere altri articoli simili a Hasse–Arf theorem puoi visitare la categoria Galois theory.

Vai su

Utilizziamo cookie propri e di terze parti per migliorare l'esperienza dell'utente Maggiori informazioni