Hasse–Arf theorem

Hasse–Arf theorem In mathematics, specifically in local class field theory, the Hasse–Arf theorem is a result concerning jumps of the upper numbering filtration of the Galois group of a finite Galois extension. A special case of it when the residue fields are finite was originally proved by Helmut Hasse,[1][2] and the general result was proved by Cahit Arf.[3][4] Contenu 1 Déclaration 1.1 Higher ramification groups 1.2 Énoncé du théorème 2 Exemple 3 Non-abelian extensions 4 Remarques 5 References Statement Higher ramification groups Main article: Ramification group The theorem deals with the upper numbered higher ramification groups of a finite abelian extension L/K. So assume L/K is a finite Galois extension, and that vK is a discrete normalised valuation of K, whose residue field has characteristic p > 0, and which admits a unique extension to L, say w. Denote by vL the associated normalised valuation ew of L and let {displaystyle scriptstyle {mathématique {O}}} be the valuation ring of L under vL. Let L/K have Galois group G and define the s-th ramification group of L/K for any real s ≥ −1 by {style d'affichage G_{s}(L/K)={sigma in G,:,v_{L}(sigma a-a)geq s+1{texte{ pour tous }}ain {mathématique {O}}}.} Alors, par exemple, G−1 is the Galois group G. To pass to the upper numbering one has to define the function ψL/K which in turn is the inverse of the function ηL/K defined by {displaystyle eta _{L/K}(s)=int _{0}^{s}{frac {dx}{|G_{0}:G_{X}|}}.} The upper numbering of the ramification groups is then defined by Gt(L/K) = Gs(L/K) where s = ψL/K(t).

These higher ramification groups Gt(L/K) are defined for any real t ≥ −1, but since vL is a discrete valuation, the groups will change in discrete jumps and not continuously. Thus we say that t is a jump of the filtration {Gt(L/K) : t ≥ −1} if Gt(L/K) ≠ Gu(L/K) for any u > t. The Hasse–Arf theorem tells us the arithmetic nature of these jumps.

Statement of the theorem With the above set up, the theorem states that the jumps of the filtration {Gt(L/K) : t ≥ −1} are all rational integers.[4][5] Example Suppose G is cyclic of order {style d'affichage p^{n}} , {style d'affichage p} residue characteristic and {style d'affichage G(je)} be the subgroup of {style d'affichage G} de commande {style d'affichage p^{n-je}} . The theorem says that there exist positive integers {displaystyle i_{0},je_{1},...,je_{n-1}} tel que {style d'affichage G_{0}=cdots =G_{je_{0}}=G=G^{0}=cdots =G^{je_{0}}} {style d'affichage G_{je_{0}+1}=cdots =G_{je_{0}+pi_{1}}=G(1)=G^{je_{0}+1}=cdots =G^{je_{0}+je_{1}}} {style d'affichage G_{je_{0}+pi_{1}+1}=cdots =G_{je_{0}+pi_{1}+p^{2}je_{2}}=G(2)=G^{je_{0}+je_{1}+1}} ... {style d'affichage G_{je_{0}+pi_{1}+cdots +p^{n-1}je_{n-1}+1}=1=G^{je_{0}+cdots +i_{n-1}+1}.} [4] Non-abelian extensions For non-abelian extensions the jumps in the upper filtration need not be at integers. Serre gave an example of a totally ramified extension with Galois group the quaternion group Q8 of order 8 with G0 = Q8 G1 = Q8 G2 = Z/2Z G3 = Z/2Z G4 = 1 The upper numbering then satisfies Gn = Q8 for n≤1 Gn = Z/2Z for 1

Si vous voulez connaître d'autres articles similaires à Hasse–Arf theorem vous pouvez visiter la catégorie Galois theory.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations