Hartogs–Rosenthal theorem

Hartogs–Rosenthal theorem In mathematics, the Hartogs–Rosenthal theorem is a classical result in complex analysis on the uniform approximation of continuous functions on compact subsets of the complex plane by rational functions. The theorem was proved in 1931 by the German mathematicians Friedrich Hartogs and Arthur Rosenthal and has been widely applied, particularly in operator theory.

Conteúdo 1 Declaração 2 Prova 3 Veja também 4 Notas 5 References Statement The Hartogs–Rosenthal theorem states that if K is a compact subset of the complex plane with Lebesgue measure zero, then any continuous complex-valued function on K can be uniformly approximated by rational functions.

Proof By the Stone–Weierstrass theorem any complex-valued continuous function on K can be uniformly approximated by a polynomial in {estilo de exibição com} e {estilo de exibição {overline {z}}} .

So it suffices to show that {estilo de exibição {overline {z}}} can be uniformly approximated by a rational function on K.

Deixe g(z) be a smooth function of compact support on C equal to 1 on K and set {estilo de exibição f(z)=g(z)cdot {overline {z}}.} By the generalized Cauchy integral formula {estilo de exibição f(z)={fratura {1}{2pi eu}}iint _{Cbackslash K}{fratura {f parcial}{parcial {bar {W}}}}{fratura {dwwedge d{bar {W}}}{w-z}},} since K has measure zero.

Restricting z to K and taking Riemann approximating sums for the integral on the right hand side yields the required uniform approximation of {estilo de exibição {bar {z}}} by a rational function.[1] See also Runge's theorem Mergelyan's theorem Notes ^ Conway 2000 References Conway, John B. (1995), Functions of one complex variable II, Textos de Graduação em Matemática, volume. 159, Springer, p. 197, ISBN 0387944605 Conway, John B. (2000), A course in operator theory, Pós Graduação em Matemática, volume. 21, Sociedade Americana de Matemática, pp. 175-176, ISBN 0821820656 Gamelin, Theodore W. (2005), Uniform algebras (2ª edição), Sociedade Americana de Matemática, pp. 46-47, ISBN 0821840495 Hartogs, Friedrichs; Rosenthal, Arthur (1931), "Über Folgen analytischer Funktionen", Anais Matemáticos, 104: 606-610, doi:10.1007/bf01457959, S2CID 179177370 Categorias: Rational functionsTheorems in approximation theoryTheorems in complex analysis

Se você quiser conhecer outros artigos semelhantes a Hartogs–Rosenthal theorem você pode visitar a categoria Rational functions.

Deixe uma resposta

seu endereço de e-mail não será publicado.

Ir para cima

Usamos cookies próprios e de terceiros para melhorar a experiência do usuário Mais informação