Harnack's principle

Harnack's principle (Redirected from Harnack's theorem) Jump to navigation Jump to search In complex analysis, Harnack's principle or Harnack's theorem is one of several closely related theorems about the convergence of sequences of harmonic functions, that follow from Harnack's inequality.

If the functions {displaystyle u_{1}(z)} , {displaystyle u_{2}(z)} , ... are harmonic in an open connected subset {style d'affichage G} of the complex plane C, et {displaystyle u_{1}(z)leq u_{2}(z)leq dots } in every point of {style d'affichage G} , then the limit {style d'affichage lim _{pas trop }tu_{n}(z)} either is infinite in every point of the domain {style d'affichage G} or it is finite in every point of the domain, in both cases uniformly in each compact subset of {style d'affichage G} . In case the limits are finite, the limit function {style d'affichage u(z)=lim _{pas trop }tu_{n}(z)} is harmonic in {style d'affichage G} .

References Kamynin, L.I. (2001) [1994], "Harnack theorem", Encyclopédie des mathématiques, EMS Press This article incorporates material from Harnack's principle on PlanetMath, qui est sous licence Creative Commons Attribution/Share-Alike License. Catégories: Harmonic functionsTheorems in complex analysisMathematical principles

Si vous voulez connaître d'autres articles similaires à Harnack's principle vous pouvez visiter la catégorie Harmonic functions.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations