Harish-Chandra character

Harish-Chandra character (Redirected from Harish–Chandra's regularity theorem) Vai alla navigazione Vai alla ricerca In matematica, the Harish-Chandra character, named after Harish-Chandra, of a representation of a semisimple Lie group G on a Hilbert space H is a distribution on the group G that is analogous to the character of a finite-dimensional representation of a compact group.

Definition Suppose that π is an irreducible unitary representation of G on a Hilbert space H. If f is a compactly supported smooth function on the group G, then the operator on H {stile di visualizzazione pi (f)=int _{G}f(X)pi (X),dx} è di classe trace, and the distribution {displaystyle Theta _{pi }:fmapsto operatorname {tr} (pi (f))} is called the character (or global character or Harish-Chandra character) of the representation.

The character Θπ is a distribution on G that is invariant under conjugation, and is an eigendistribution of the center of the universal enveloping algebra of G, in other words an invariant eigendistribution, with eigenvalue the infinitesimal character of the representation π.

Harish-Chandra's regularity theorem states that any invariant eigendistribution, and in particular any character of an irreducible unitary representation on a Hilbert space, is given by a locally integrable function.

Riferimenti A. w. Knapp, Representation Theory of Semisimple Groups: An Overview Based on Examples. ISBN 0-691-09089-0 Categorie: Representation theory of Lie groups

Se vuoi conoscere altri articoli simili a Harish-Chandra character puoi visitare la categoria Representation theory of Lie groups.

lascia un commento

L'indirizzo email non verrà pubblicato.

Vai su

Utilizziamo cookie propri e di terze parti per migliorare l'esperienza dell'utente Maggiori informazioni