Harish-Chandra character

Harish-Chandra character (Redirected from Harish–Chandra's regularity theorem) Aller à la navigation Aller à la recherche En mathématiques, the Harish-Chandra character, named after Harish-Chandra, of a representation of a semisimple Lie group G on a Hilbert space H is a distribution on the group G that is analogous to the character of a finite-dimensional representation of a compact group.

Definition Suppose that π is an irreducible unitary representation of G on a Hilbert space H. If f is a compactly supported smooth function on the group G, then the operator on H {style d'affichage pi (F)=int _{g}F(X)pi (X),dx} est de classe trace, and the distribution {displaystyle Theta _{pi }:fmapsto operatorname {Tr} (pi (F))} is called the character (or global character or Harish-Chandra character) of the representation.

The character Θπ is a distribution on G that is invariant under conjugation, and is an eigendistribution of the center of the universal enveloping algebra of G, in other words an invariant eigendistribution, with eigenvalue the infinitesimal character of the representation π.

Harish-Chandra's regularity theorem states that any invariant eigendistribution, and in particular any character of an irreducible unitary representation on a Hilbert space, is given by a locally integrable function.

Références A. O. Knapp, Representation Theory of Semisimple Groups: An Overview Based on Examples. ISBN 0-691-09089-0 Catégories: Théorie des représentations des groupes de Lie

Si vous voulez connaître d'autres articles similaires à Harish-Chandra character vous pouvez visiter la catégorie Théorie des représentations des groupes de Lie.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations