Hadamard three-circle theorem

Hadamard three-circle theorem In complex analysis, a branch of mathematics, the Hadamard three-circle theorem is a result about the behavior of holomorphic functions.
Let {displaystyle f(z)} be a holomorphic function on the annulus {displaystyle r_{1}leq left|zright|leq r_{3}.} Let {displaystyle M(r)} be the maximum of {displaystyle |f(z)|} on the circle {displaystyle |z|=r.} Then, {displaystyle log M(r)} is a convex function of the logarithm {displaystyle log(r).} Moreover, if {displaystyle f(z)} is not of the form {displaystyle cz^{lambda }} for some constants {displaystyle lambda } and {displaystyle c} , then {displaystyle log M(r)} is strictly convex as a function of {displaystyle log(r).} The conclusion of the theorem can be restated as {displaystyle log left({frac {r_{3}}{r_{1}}}right)log M(r_{2})leq log left({frac {r_{3}}{r_{2}}}right)log M(r_{1})+log left({frac {r_{2}}{r_{1}}}right)log M(r_{3})} for any three concentric circles of radii {displaystyle r_{1}
External links "proof of Hadamard three-circle theorem" Categories: InequalitiesTheorems in complex analysis
Si quieres conocer otros artículos parecidos a Hadamard three-circle theorem puedes visitar la categoría Inequalities.
Deja una respuesta