Gromov's compactness theorem (topologie)

Gromov's compactness theorem (topologie) Not to be confused with Gromov's compactness theorem in metric geometry.

In the mathematical field of symplectic topology, Gromov's compactness theorem states that a sequence of pseudoholomorphic curves in an almost complex manifold with a uniform energy bound must have a subsequence which limits to a pseudoholomorphic curve which may have nodes or (a finite tree of) "bubbles". A bubble is a holomorphic sphere which has a transverse intersection with the rest of the curve. Ce théorème, and its generalizations to punctured pseudoholomorphic curves, underlies the compactness results for flow lines in Floer homology and symplectic field theory.

If the complex structures on the curves in the sequence do not vary, only bubbles can occur; nodes can occur only if the complex structures on the domain are allowed to vary. Généralement, the energy bound is achieved by considering a symplectic manifold with compatible almost-complex structure as the target, and assuming that curves to lie in a fixed homology class in the target. This is because the energy of such a pseudoholomorphic curve is given by the integral of the target symplectic form over the curve, and thus by evaluating the cohomology class of that symplectic form on the homology class of the curve. The finiteness of the bubble tree follows from (positif) lower bounds on the energy contributed by a holomorphic sphere.

References Gromov, M. (1985). "Pseudo holomorphic curves in symplectic manifolds". Découvertes mathématiques. 82 (2): 307–347. est ce que je:10.1007/BF01388806. Bourgeois, F.; Eliashberg, Ya.; Hofer, H; Wysocki, K; Zehnder, E. (2003). "Compactness results in symplectic field theory". Geometry and Topology. 7 (2): 799–888. arXiv:math/0308183. est ce que je:10.2140/gt.2003.7.799. Cet article lié à la topologie est un bout. Vous pouvez aider Wikipédia en l'agrandissant.

Catégories: Symplectic topologyCompactness theoremsTopology stubs

Si vous voulez connaître d'autres articles similaires à Gromov's compactness theorem (topologie) vous pouvez visiter la catégorie Compactness theorems.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations