Théorème de Goddard-Thorn

Goddard–Thorn theorem hide This article has multiple issues. Aidez-nous à l'améliorer ou discutez de ces problèmes sur la page de discussion. (Découvrez comment et quand supprimer ces modèles de messages) Cet article peut être trop technique pour que la plupart des lecteurs le comprennent. (Juin 2017) Cet article comprend une liste de références, lecture connexe ou liens externes, mais ses sources restent floues car il manque de citations en ligne. (Novembre 2020) En mathématiques, and in particular in the mathematical background of string theory, the Goddard–Thorn theorem (also called the no-ghost theorem) is a theorem describing properties of a functor that quantizes bosonic strings. It is named after Peter Goddard and Charles Thorn.

Le nom "no-ghost theorem" stems from the fact that in the original statement of the theorem, the natural inner product induced on the output vector space is positive definite. Ainsi, there were no so-called ghosts (Pauli–Villars ghosts), or vectors of negative norm. Le nom "no-ghost theorem" is also a word play on the no-go theorem of quantum mechanics.

Formalism There are two naturally isomorphic functors that are typically used to quantize bosonic strings. Dans les deux cas, one starts with positive-energy representations of the Virasoro algebra of central charge 26, equipped with Virasoro-invariant bilinear forms, and ends up with vector spaces equipped with bilinear forms. Ici, "Virasoro-invariant" means Ln is adjoint to L−n for all integers n.

The first functor historically is "old canonical quantization", and it is given by taking the quotient of the weight 1 primary subspace by the radical of the bilinear form. Ici, "primary subspace" is the set of vectors annihilated by Ln for all strictly positive n, et "weight 1" means L0 acts by identity. A second, naturally isomorphic functor, is given by degree 1 BRST cohomology. Older treatments of BRST cohomology often have a shift in the degree due to a change in choice of BRST charge, so one may see degree −1/2 cohomology in papers and texts from before 1995. A proof that the functors are naturally isomorphic can be found in Section 4.4 of Polchinski's String Theory text.

The Goddard–Thorn theorem amounts to the assertion that this quantization functor more or less cancels the addition of two free bosons, as conjectured by Lovelace in 1971. Lovelace's precise claim was that at critical dimension 26, Virasoro-type Ward identities cancel two full sets of oscillators. Mathématiquement, this is the following claim: Let V be a unitarizable Virasoro representation of central charge 24 with Virasoro-invariant bilinear form, and let π1,1λ be the irreducible module of the R1,1 Heisenberg Lie algebra attached to a nonzero vector λ in R1,1. Then the image of V ⊗ π1,1λ under quantization is canonically isomorphic to the subspace of V on which L0 acts by 1-(je,je).

The no-ghost property follows immediately, since the positive-definite Hermitian structure of V is transferred to the image under quantization.

Applications The bosonic string quantization functors described here can be applied to any conformal vertex algebra of central charge 26, and the output naturally has a Lie algebra structure. The Goddard–Thorn theorem can then be applied to concretely describe the Lie algebra in terms of the input vertex algebra.

Perhaps the most spectacular case of this application is Richard Borcherds's proof of the monstrous moonshine conjecture, where the unitarizable Virasoro representation is the Monster vertex algebra (also called "Moonshine module") constructed by Frenkel, Lepowsky, and Meurman. By taking a tensor product with the vertex algebra attached to a rank 2 hyperbolic lattice, and applying quantization, one obtains the monster Lie algebra, which is a generalized Kac–Moody algebra graded by the lattice. By using the Goddard–Thorn theorem, Borcherds showed that the homogeneous pieces of the Lie algebra are naturally isomorphic to graded pieces of the Moonshine module, as representations of the monster simple group.

Earlier applications include Frenkel's determination of upper bounds on the root multiplicities of the Kac-Moody Lie algebra whose Dynkin diagram is the Leech lattice, and Borcherds's construction of a generalized Kac-Moody Lie algebra that contains Frenkel's Lie algebra and saturates Frenkel's 1/∆ bound.

References Borcherds, Richard E (1990). "The monster Lie algebra". Avancées en mathématiques. 83 (1): 30–47. est ce que je:10.1016/0001-8708(90)90067-w. ISSN 0001-8708. Borcherds, Richard E. (1992). "Monstrous moonshine and monstrous Lie superalgebras" (PDF). Découvertes mathématiques. Springer Science and Business Media LLC. 109 (1): 405–444. Code bib:1992InMat.109..405B. est ce que je:10.1007/bf01232032. ISSN 0020-9910. S2CID 16145482. je. Frenkel, Representations of Kac-Moody algebras and dual resonance models Applications of group theory in theoretical physics, Lect. Appl. Math. 21 A.M.S. (1985) 325–353. Goddard, P; Thorn, C.B. (1972). "Compatibility of the dual Pomeron with unitarity and the absence of ghosts in the dual resonance model". Physics Letters B. Elsevier BV. 40 (2): 235–238. Code bib:1972PhLB...40..235G. est ce que je:10.1016/0370-2693(72)90420-0. ISSN 0370-2693. Lovelace, C. (1971). "Pomeron form factors and dual Regge cuts". Physics Letters B. Elsevier BV. 34 (6): 500–506. Code bib:1971PhLB...34..500L. est ce que je:10.1016/0370-2693(71)90665-4. ISSN 0370-2693. Polchinski, Joseph (1998). String Theory. Actes de l'Académie nationale des sciences des États-Unis d'Amérique. Volume. 95. Cambridge: la presse de l'Universite de Cambridge. pp. 11039–40. est ce que je:10.1017/cbo9780511816079. ISBN 978-0-511-81607-9. PMC 33894. PMID 9736684. Catégories: Theorems in linear algebraString theoryTheorems in mathematical physics

Si vous voulez connaître d'autres articles similaires à Théorème de Goddard-Thorn vous pouvez visiter la catégorie String theory.

Laisser un commentaire

Votre adresse email ne sera pas publiée.


Nous utilisons nos propres cookies et ceux de tiers pour améliorer l'expérience utilisateur Plus d'informations