Gelfond–Schneider theorem

Gelfond–Schneider theorem In mathematics, the Gelfond–Schneider theorem establishes the transcendence of a large class of numbers.

Contenuti 1 Storia 2 Dichiarazione 2.1 Commenti 3 Corollari 4 Applicazioni 5 Guarda anche 6 Riferimenti 6.1 Ulteriori letture 7 External links History It was originally proved independently in 1934 by Aleksandr Gelfond[1] and Theodor Schneider.

Statement If a and b are complex algebraic numbers with a ≠ 0, 1, and b not rational, then any value of ab is a transcendental number. Comments The values of a and b are not restricted to real numbers; complex numbers are allowed (here complex numbers are not regarded as rational when they have an imaginary part not equal to 0, even if both the real and imaginary parts are rational). In generale, ab = exp(b ln a) is multivalued, where ln stands for the natural logarithm. This accounts for the phrase "any value of" in the theorem's statement. Una formulazione equivalente del teorema è la seguente: if α and γ are nonzero algebraic numbers, and we take any non-zero logarithm of α, poi (log γ)/(log α) is either rational or transcendental. This may be expressed as saying that if log α, log γ are linearly independent over the rationals, then they are linearly independent over the algebraic numbers. The generalisation of this statement to more general linear forms in logarithms of several algebraic numbers is in the domain of transcendental number theory. If the restriction that a and b be algebraic is removed, the statement does not remain true in general. Per esempio, {stile di visualizzazione {sinistra({mq {2}}^{mq {2}}Giusto)}^{mq {2}}={mq {2}}^{{mq {2}}cdot {mq {2}}}={mq {2}}^{2}=2.} Qui, a is √2√2, quale (as proven by the theorem itself) is transcendental rather than algebraic. Allo stesso modo, if a = 3 and b = (tronco d'albero 2)/(tronco d'albero 3), which is transcendental, then ab = 2 is algebraic. A characterization of the values for a and b, which yield a transcendental ab, is not known. Kurt Mahler proved the p-adic analogue of the theorem: if a and b are in Cp, the completion of the algebraic closure of Qp, and they are algebraic over Q, e se {stile di visualizzazione |a-1|_{p}<1} and {displaystyle |b-1|_{p}<1,} then {displaystyle (log _{p}a)/(log _{p}b)} is either rational or transcendental, where logp is the p-adic logarithm function. Corollaries The transcendence of the following numbers follows immediately from the theorem: Gelfond–Schneider constant {displaystyle 2^{sqrt {2}}} and its square root {displaystyle {sqrt {2}}^{sqrt {2}}.} Gelfond's constant {displaystyle e^{pi }=left(e^{ipi }right)^{-i}=(-1)^{-i}=23.14069263ldots } {displaystyle i^{i}=left(e^{frac {ipi }{2}}right)^{i}=e^{-{frac {pi }{2}}}=0.207879576ldots } Applications The Gelfond–Schneider theorem answers affirmatively Hilbert's seventh problem. See also Lindemann–Weierstrass theorem Baker's theorem; an extension of the result Schanuel's conjecture; if proven it would imply both the Gelfond–Schneider theorem and the Lindemann–Weierstrass theorem References ^ Aleksandr Gelfond (1934). "Sur le septième Problème de Hilbert". Bulletin de l'Académie des Sciences de l'URSS. Classe des sciences mathématiques et na. VII (4): 623–634. Further reading Baker, Alan (1975), Transcendental number theory, Cambridge University Press, p. 10, ISBN 978-0-521-20461-3, Zbl 0297.10013 Feldman, N. I.; Nesterenko, Yu. V. (1998), Transcendental numbers, Encyclopedia of mathematical sciences, vol. 44, Springer-Verlag, ISBN 3-540-61467-2, MR 1603604 Gel'fond, A. O. (1960) [1952], Transcendental and algebraic numbers, Dover Phoenix editions, New York: Dover Publications, ISBN 978-0-486-49526-2, MR 0057921 LeVeque, William J. (2002) [1956]. Topics in Number Theory, Volumes I and II. New York: Dover Publications. ISBN 978-0-486-42539-9. Niven, Ivan (1956). Irrational Numbers. Mathematical Association of America. ISBN 0-88385-011-7. Weisstein, Eric W. "Gelfond-Schneider Theorem". MathWorld. External links A proof of the Gelfond–Schneider theorem Categories: Transcendental numbersTheorems in number theory

Se vuoi conoscere altri articoli simili a Gelfond–Schneider theorem puoi visitare la categoria Teoremi di teoria dei numeri.

lascia un commento

L'indirizzo email non verrà pubblicato.

Vai su

Utilizziamo cookie propri e di terze parti per migliorare l'esperienza dell'utente Maggiori informazioni