Gelfond–Schneider theorem

Gelfond–Schneider theorem In mathematics, the Gelfond–Schneider theorem establishes the transcendence of a large class of numbers.

Contents 1 History 2 Statement 2.1 Comments 3 Corollaries 4 Applications 5 See also 6 References 6.1 Further reading 7 External links History It was originally proved independently in 1934 by Aleksandr Gelfond[1] and Theodor Schneider.

Statement If a and b are complex algebraic numbers with a ≠ 0, 1, and b not rational, then any value of ab is a transcendental number. Comments The values of a and b are not restricted to real numbers; complex numbers are allowed (here complex numbers are not regarded as rational when they have an imaginary part not equal to 0, even if both the real and imaginary parts are rational). In general, ab = exp(b ln a) is multivalued, where ln stands for the natural logarithm. This accounts for the phrase "any value of" in the theorem's statement. An equivalent formulation of the theorem is the following: if α and γ are nonzero algebraic numbers, and we take any non-zero logarithm of α, then (log γ)/(log α) is either rational or transcendental. This may be expressed as saying that if log α, log γ are linearly independent over the rationals, then they are linearly independent over the algebraic numbers. The generalisation of this statement to more general linear forms in logarithms of several algebraic numbers is in the domain of transcendental number theory. If the restriction that a and b be algebraic is removed, the statement does not remain true in general. For example, {displaystyle {left({sqrt {2}}^{sqrt {2}}right)}^{sqrt {2}}={sqrt {2}}^{{sqrt {2}}cdot {sqrt {2}}}={sqrt {2}}^{2}=2.} Here, a is √2√2, which (as proven by the theorem itself) is transcendental rather than algebraic. Similarly, if a = 3 and b = (log 2)/(log 3), which is transcendental, then ab = 2 is algebraic. A characterization of the values for a and b, which yield a transcendental ab, is not known. Kurt Mahler proved the p-adic analogue of the theorem: if a and b are in Cp, the completion of the algebraic closure of Qp, and they are algebraic over Q, and if {displaystyle |a-1|_{p}<1} and {displaystyle |b-1|_{p}<1,} then {displaystyle (log _{p}a)/(log _{p}b)} is either rational or transcendental, where logp is the p-adic logarithm function. Corollaries The transcendence of the following numbers follows immediately from the theorem: Gelfond–Schneider constant {displaystyle 2^{sqrt {2}}} and its square root {displaystyle {sqrt {2}}^{sqrt {2}}.} Gelfond's constant {displaystyle e^{pi }=left(e^{ipi }right)^{-i}=(-1)^{-i}=23.14069263ldots } {displaystyle i^{i}=left(e^{frac {ipi }{2}}right)^{i}=e^{-{frac {pi }{2}}}=0.207879576ldots } Applications The Gelfond–Schneider theorem answers affirmatively Hilbert's seventh problem. See also Lindemann–Weierstrass theorem Baker's theorem; an extension of the result Schanuel's conjecture; if proven it would imply both the Gelfond–Schneider theorem and the Lindemann–Weierstrass theorem References ^ Aleksandr Gelfond (1934). "Sur le septième Problème de Hilbert". Bulletin de l'Académie des Sciences de l'URSS. Classe des sciences mathématiques et na. VII (4): 623–634. Further reading Baker, Alan (1975), Transcendental number theory, Cambridge University Press, p. 10, ISBN 978-0-521-20461-3, Zbl 0297.10013 Feldman, N. I.; Nesterenko, Yu. V. (1998), Transcendental numbers, Encyclopedia of mathematical sciences, vol. 44, Springer-Verlag, ISBN 3-540-61467-2, MR 1603604 Gel'fond, A. O. (1960) [1952], Transcendental and algebraic numbers, Dover Phoenix editions, New York: Dover Publications, ISBN 978-0-486-49526-2, MR 0057921 LeVeque, William J. (2002) [1956]. Topics in Number Theory, Volumes I and II. New York: Dover Publications. ISBN 978-0-486-42539-9. Niven, Ivan (1956). Irrational Numbers. Mathematical Association of America. ISBN 0-88385-011-7. Weisstein, Eric W. "Gelfond-Schneider Theorem". MathWorld. External links A proof of the Gelfond–Schneider theorem Categories: Transcendental numbersTheorems in number theory

Si quieres conocer otros artículos parecidos a Gelfond–Schneider theorem puedes visitar la categoría Theorems in number theory.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.


Utilizamos cookies propias y de terceros para mejorar la experiencia de usuario Más información