Frobenius reciprocity

Frobenius reciprocity (Redirected from Frobenius reciprocity theorem) Ir para a navegação Ir para a pesquisa Em matemática, and in particular representation theory, Frobenius reciprocity is a theorem expressing a duality between the process of restricting and inducting. It can be used to leverage knowledge about representations of a subgroup to find and classify representations of "large" groups that contain them. It is named for Ferdinand Georg Frobenius, the inventor of the representation theory of finite groups.

Conteúdo 1 Declaração 1.1 Character theory 1.2 Module theory 1.3 Category theory 2 Veja também 3 Notas 4 References Statement Character theory The theorem was originally stated in terms of character theory. Let G be a finite group with a subgroup H, deixar {nome do operador de estilo de exibição {Res} _{H}^{G}} denote the restriction of a character, or more generally, class function of G to H, e deixar {nome do operador de estilo de exibição {Ind} _{H}^{G}} denote the induced class function of a given class function on H. For any finite group A, there is an inner product {displaystyle langle -,-rangle _{UMA}} on the vector space of class functions {displaystyle Ato mathbb {C} } (described in detail in the article Schur orthogonality relations). Agora, for any class functions {estilo de exibição psi :Hto mathbb {C} } e {estilo de exibição varphi :Gto mathbb {C} } , the following equality holds: {displaystyle langle operatorname {Ind} _{H}^{G}psi ,varphi rangle _{G}=langle psi ,nome do operador {Res} _{H}^{G}varphi rangle _{H}} .[1][2] Em outras palavras, {nome do operador de estilo de exibição {Ind} _{H}^{G}} e {nome do operador de estilo de exibição {Res} _{H}^{G}} are Hermitian adjoint.

show Proof of Frobenius reciprocity for class functions Module theory See also: Change of rings § Relation between the extension of scalars and the restriction of scalars As explained in the section Representation theory of finite groups#Representations, modules and the convolution algebra, the theory of the representations of a group G over a field K is, in a certain sense, equivalent to the theory of modules over the group algebra K[G].[3] Portanto, there is a corresponding Frobenius reciprocity theorem for K[G]-módulos.

Let G be a group with subgroup H, let M be an H-module, and let N be a G-module. In the language of module theory, the induced module {estilo de exibição K[G]otimes _{K[H]}M} corresponds to the induced representation {nome do operador de estilo de exibição {Ind} _{H}^{G}} , whereas the restriction of scalars {estilo de exibição {_{K[H]}}N} corresponds to the restriction {nome do operador de estilo de exibição {Res} _{H}^{G}} . De acordo, the statement is as follows: The following sets of module homomorphisms are in bijective correspondence: {nome do operador de estilo de exibição {Hom} _{K[G]}(K[G]otimes _{K[H]}M,N)cong operatorname {Hom} _{K[H]}(M,{_{K[H]}}N)} .[4][5] As noted below in the section on category theory, this result applies to modules over all rings, not just modules over group algebras.

Category theory Let G be a group with a subgroup H, e deixar {nome do operador de estilo de exibição {Res} _{H}^{G},nome do operador {Ind} _{H}^{G}} be defined as above. For any group A and field K let {estilo de exibição {textbf {Rep}}_{UMA}^{K}} denote the category of linear representations of A over K. There is a forgetful functor {estilo de exibição {começar{alinhado}nome do operador {Res} _{H}^{G}:{textbf {Rep}}_{G}&longrightarrow {textbf {Rep}}_{H}\(V,rho )&longmapsto operatorname {Res} _{H}^{G}(V,rho )fim{alinhado}}} This functor acts as the identity on morphisms. There is a functor going in the opposite direction: {estilo de exibição {começar{alinhado}nome do operador {Ind} _{H}^{G}:{textbf {Rep}}_{H}&longrightarrow {textbf {Rep}}_{G}\(C,sim )&longmapsto operatorname {Ind} _{H}^{G}(C,sim )fim{alinhado}}} These functors form an adjoint pair {nome do operador de estilo de exibição {Ind} _{H}^{G}dashv operatorname {Res} _{H}^{G}} .[6][7] In the case of finite groups, they are actually both left- and right-adjoint to one another. This adjunction gives rise to a universal property for the induced representation (para detalhes, see Induced representation#Properties).

In the language of module theory, the corresponding adjunction is an instance of the more general relationship between restriction and extension of scalars.

See also Mathematics portal See Restricted representation and Induced representation for definitions of the processes to which this theorem applies. See Representation theory of finite groups for a broad overview of the subject of group representations. See Selberg trace formula and the Arthur-Selberg trace formula for generalizations to discrete cofinite subgroups of certain locally compact groups. Notes ^ Serre 1977, p. 56. ^ Sengupta 2012, p. 246. ^ Specifically, there is an isomorphism of categories between K[G]-Mod and RepGK, as described on the pages Isomorphism of categories#Category of representations and Representation theory of finite groups#Representations, modules and the convolution algebra. ^ James, Gordon Douglas (1945–2001). Representations and characters of groups. Liebeck, M. C. (Martin W.) (2ª edição). Cambridge, Reino Unido: Cambridge University Press. ISBN 9780521003926. OCLC 52220683. ^ Sengupta 2012, p. 245. ^ "Frobenius reciprocity on planetmath.org". planetmath.org. Recuperado 2017-11-02. ^ "Frobenius reciprocity in nLab". ncatlab.org. Recuperado 2017-11-02. References Serre, Jean Pierre (1926–1977). Linear representations of finite groups. Nova york: Springer-Verlag. ISBN 0387901906. OCLC 2202385. Sengupta, Âmbar (2012). Representando grupos finitos : uma introdução semisimples. Nova york. doi:10.1007/978-1-4614-1231-1_8. ISBN 9781461412304. OCLC 769756134. Weisstein, Eric. "Induced Representation". mathworld.wolfram.com. Recuperado 2017-11-02. Categorias: Representation theory of finite groupsTheorems in representation theoryAdjoint functors

Se você quiser conhecer outros artigos semelhantes a Frobenius reciprocity você pode visitar a categoria Adjoint functors.

Deixe uma resposta

seu endereço de e-mail não será publicado.

Ir para cima

Usamos cookies próprios e de terceiros para melhorar a experiência do usuário Mais informação